• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于复Morlet小波SVM的负荷预测

陈维荣,郑永康,戴朝华,王维博

downloadPDF
陈维荣, 郑永康, 戴朝华, 王维博. 基于复Morlet小波SVM的负荷预测[J]. 江南娱乐网页版入口官网下载安装学报, 2009, 22(5): 631-636.
引用本文: 陈维荣, 郑永康, 戴朝华, 王维博. 基于复Morlet小波SVM的负荷预测[J]. 江南娱乐网页版入口官网下载安装学报, 2009, 22(5): 631-636.
CHEN Weirong, ZHENG Yongkang, DAI Chaohua, WANG Weibo. Short-Term Load Forecasting Based on Complex Morlet Wavelet SVM[J]. Journal of Southwest Jiaotong University, 2009, 22(5): 631-636.
Citation: CHEN Weirong, ZHENG Yongkang, DAI Chaohua, WANG Weibo. Short-Term Load Forecasting Based on Complex Morlet Wavelet SVM[J].Journal of Southwest Jiaotong University, 2009, 22(5): 631-636.

基于复Morlet小波SVM的负荷预测

基金项目:

江南娱乐网页版入口官网下载安装博士生创新基金的资助(2007-3)

详细信息
    作者简介:

    陈维荣(1965- ),男,教授,博士,从事综合自动化、智能检测技术,E-mail:wrchen@home.swjtu.edu.cn

    通讯作者:

    郑永康(1977- ),男,博士研究生,研究方向为负荷预测、计算智能等,E-mail:zyk555@163.com

Short-Term Load Forecasting Based on Complex Morlet Wavelet SVM

    • 摘要:为提高预测精度和克服支持向量机(SVM)凭经验选择参数的不足,针对小波擅长信号细微特征提取和云遗传算法(CGA)良好的全局寻优能力,构建了以复Morlet小波为核函数、以CGA为参数优化算法的SVM——基于CGA的复Morlet小波SVM(CGA-CMW-SVM).针对短期负荷预测,为降低系统复杂性,克服负荷数据信息不完备、不精确的问题,仅仅利用了负荷的历史数据而不考虑气象和节假日等因素,在分析负荷时间序列混沌特性的基础上,对负荷数据进行相空间重构,并以相空间矢量作为CGA-CMW-SVM的输入,提出了短期负荷预测的新方法.仿真结果表明,该方法平均误差和最大误差小,平均误差在1.3400%以内,最小误差为1.0087%.

    • 蒋传文,袁智强,侯志俭,等.高嵌入维混沌负荷序列预测方法研究[J].电网技术,2004,28(3):25-28.JIANG Chuanwen,YUAN Zhiqiang,HOU Zhijian,et al.Research of forecasting method on chaotic load series with high embedded dimension[J].Power System Technology,2004,28(3):25-28.[2] 张步涵,刘小华,万建平,等.基于混沌时间序列的负荷预测及其关键问题分析[J].电网技术,2004,28(13):32-35.ZHANG Buhan,LIU Xiaohua,WAN Jianping,et al.Load forecasting based on chaotic time series and analysis of its key factors[J].Power System Technology,2004,28(13):32-35.[3] 李元诚,方廷健,于尔铿.短期负荷预测的支持向量机方法研究[J].中国电机工程学报,2003,23(6):55-59.LI Yuancheng,FANG Tingjian,YU Erkeng.Study of support vector machines for short-term load forecasting[J].Proceedings of the CSEE,2003,23(6):55-59.[4] 谢宏,魏江平,刘鹤立.短期负荷预测中支持向量机模型的参数选取和优化方法[J].中国电机工程学报,2006,26(22):17-22.XIE Hong,WEI Jiangping,LIU Heli.Parameter selection and optimization method of SVM model for short-term load forecasting[J].Proceedings of the CSEE,2006,26(22):17-22.[5] ZHANG Mingguang.Short-term load forecasting based on support vector machines regression[C] ∥Proceedings of the Fourth International Conference on Machine Learning and Cybernetics.Guangzhou:[s.n.],2005:4310-4314.[6] 姜惠兰,刘晓津,关颖,等.基于硬C均值聚类算法和支持向量机的电力系统短期负荷预测[J].电网技术,2006,30(8):81-85.JIANG Huilan,LIU Xiaojin,GUAN Ying,et al.Short-term load forecasting based on hard-c mean clustering algorithm and support vector machine[J].Power System Technology,2006,30(8):81-85.[7] VAPNIK V N.Statistical learning theory[M].New York:Springer-Verlag,2000.[8] NELLO C,JOHN S T.An introduction to support vector machines and other kernel-based learning methods[M].Cambridge:Cambridge University Press,2000.[9] 戴朝华,朱云芳,陈维荣.云遗传算法[J].江南娱乐网页版入口官网下载安装学报,2006,41(6):729-732.DAI Chaohua,ZHU Yunfang,CHEN Weirong.Cloud theory-based genetic algorithm[J].Journal of Southwest Jiaotong University,2006,41(6):729-732.[10] Burges C J C.Geometry and invariance in kernel based methods[C] ∥Proceedings of Advance in Kernel Methods-support Vector Learning.Cambridge:MIT Press,1999:89-116.[11] SMOLA A,SCH(O)LKOPF B,M(U)LLER K R.The connection between regularization operators and support vector kernels[J].Neural Network,1998,11(4):637-649.[12] ZHANG Li,ZHOU Weida,JIAO Licheng.Wavelet support vector machine[J].IEEE Transactions on systems,man,and cybernetics-Part B:cybernetics,2004,34(1):34-39.
    • 加载中
    计量
    • 文章访问数:1875
    • HTML全文浏览量:124
    • PDF下载量:489
    • 被引次数:0
    出版历程
    • 收稿日期:2008-11-09
    • 刊出日期:2009-11-12

    目录

      /

        返回文章
        返回
          Baidu
          map