• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于非平衡数据的车辆轮对状态集成分类方法

敖银辉,黄晓鹏,袁敏正,陈希隽,方恩权

downloadPDF
敖银辉, 黄晓鹏, 袁敏正, 陈希隽, 方恩权. 基于非平衡数据的车辆轮对状态集成分类方法[J]. 江南娱乐网页版入口官网下载安装学报, 2017, 30(5): 852-858. doi: 10.3969/j.issn.0258-2724.2017.05.003
引用本文: 敖银辉, 黄晓鹏, 袁敏正, 陈希隽, 方恩权. 基于非平衡数据的车辆轮对状态集成分类方法[J]. 江南娱乐网页版入口官网下载安装学报, 2017, 30(5): 852-858.doi:10.3969/j.issn.0258-2724.2017.05.003
AO Yinhui, HUANG Xiaopeng, YUAN Minzheng, CHEN Xijun, FANG Enquan. Integrated Classification Method for Vehicle Wheel-set Condition Based on Imbalanced Datasets[J]. Journal of Southwest Jiaotong University, 2017, 30(5): 852-858. doi: 10.3969/j.issn.0258-2724.2017.05.003
Citation: AO Yinhui, HUANG Xiaopeng, YUAN Minzheng, CHEN Xijun, FANG Enquan. Integrated Classification Method for Vehicle Wheel-set Condition Based on Imbalanced Datasets[J].Journal of Southwest Jiaotong University, 2017, 30(5): 852-858.doi:10.3969/j.issn.0258-2724.2017.05.003

基于非平衡数据的车辆轮对状态集成分类方法

doi:10.3969/j.issn.0258-2724.2017.05.003
基金项目:

广东省科技厅科技项目(2013498A)

详细信息
    作者简介:

    敖银辉(1973-),男,教授,博士,研究方向为机电设备检测和故障诊断,电话:13543407579,E-mail:aoyinhui@gdut.edu.cn

Integrated Classification Method for Vehicle Wheel-set Condition Based on Imbalanced Datasets

    • 摘要:针对地铁车辆轮轨振动信号信噪比低、非线性、非平稳等特点,为实现平轮故障的不解体检测诊断,提出了一种基于非平衡数据的集成分类器模型.以踏面正常、踏面擦伤、踏面剥离和圆周磨耗四种典型的平轮故障为研究对象,对采集的轮轨振动信号进行变分模态分解与模糊熵特征提取,构造故障特征数据集;通过偏置支持向量机筛选训练集中的支持向量样本并进行SMOTE(synthetic minority oversampling technique)过采样,对非支持向量进行分层组合并构造集成分类器,采用有向无环图的方式对测试集进行平轮故障识别;最后,通过查全率和查准率对比分析,给出多类非平衡数据集的分类性能评价.论文在车辆段轨旁进行了空载分类试验,实验结果表明,所提出的方法对4种定性模式障的识别准确率超过96%,可被有效应用于地铁车辆的平轮故障诊断.

    • 李奕璠,林建辉,刘建新,等. 车轮踏面擦伤识别方法[J]. 振动与冲击,2013,32(22):21-27. LI Yifan, LIN Jianhui, LIU Jianxin, et al. Edentification method of wheel tread flat[J]. Journal of Vibration and Shock, 2013, 32(22):21-27.
      孙永奎,余志斌,金炜东. 基于多重分形与SVM的高速列车运行状态识别方法[J]. 江南娱乐网页版入口官网下载安装学报,2015,50(1):7-12. SUN Yongkui, YU Zhibin, JIN Weidong. Recognizing running state of high-speed trains based on multifractal theory and SVM[J]. Journal of Southwest Jiaotong Vniversity, 2015, 50(1):7-12
      王雪,付振波. 采用小波分析与支持向量机的车轮踏面擦伤识别方法[J]. 中国机械工程,2004,15(18):45-47. WANG Xue, FU Zhenbo. A new method of wavelet and suport vector machine for detection of the train wheel bruise[J]. China Mechanical Engineering, 2004, 15(18):45-47.
      KUBAT M, MATWIN S. Addressing the curse of imbalanced training sets:one-sided selection[C]//Proceedings of the Fourteenth International Conference on Machine Learning. Nashville:[s.n.], 1997:179-186.
      CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE:synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2011, 16(1):321-357.
      LIU Y, YU X, HUANG J X, et al. Combining integrated sampling with SVM ensembles for learning from imbalanced datasets[J]. Information Processing & Management, 2011, 47(4):617-631.
      VEROPOULOS K, CAMPBELL C, CRISTIANINI N. Controlling the sensitivity of support vector machines[C]//Proceedings of the International Joint Conference on Artificial Intelligence. Bristol:[s.n.], 1999:55-60.
      WANG Y, MARKERT R, XIANG J, et al. Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system[J]. Mechanical Systems & Signal Processing, 2015, 60:243-251.
      CHEN W, ZHUANG J W, WANG Z. Measuring complexity using FuzzyEn, ApEn, and SampEn.[J]. Medical Engineering & Physics, 2009, 31(1):61-68.
      石敏,李影,王冰,等. 基于变分模态分解的齿轮箱故障诊断[J]. 电力科学与工程,2016,32(1):23-26. SHI Min, LI Ying, WANG Bing, et al. Gearbox fault diagnosis based on variational mode decomposition.[J]. Electric Power Science and Engineering, 2016, 32(1):23-26.
      季艳. 基于DEMD时频分析的旋转机械故障特征提取方法研究[D]. 秦皇岛:燕山大学,2015.
      丁福利,孙立民. 基于支持向量机的不平衡样本分类研究[J]. 科学技术与工程,2014,14(3):81-85. DING Fuli, SUN Limin. Unbalanced sample set classification based on support vector machine[J]. Science Technology and Engineering, 2014, 14(3):81-85.
      NAIWALA P C, KAZUNARI N, AKIRA I. Driving skill classification in curve driving scenes using machine learning[J]. Journal of Modern Transportation, 2016, 9(24):196-206.
    • 加载中
    计量
    • 文章访问数:596
    • HTML全文浏览量:122
    • PDF下载量:71
    • 被引次数:0
    出版历程
    • 收稿日期:2016-08-24
    • 刊出日期:2017-10-25

    目录

      /

        返回文章
        返回
          Baidu
          map