• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

利用逻辑演绎求解SAT问题的启发式完全算法

陈青山,徐扬,何星星

downloadPDF
陈青山, 徐扬, 何星星. 利用逻辑演绎求解SAT问题的启发式完全算法[J]. 江南娱乐网页版入口官网下载安装学报, 2017, 30(6): 1224-1232. doi: 10.3969/j.issn.0258-2724.2017.06.025
引用本文: 陈青山, 徐扬, 何星星. 利用逻辑演绎求解SAT问题的启发式完全算法[J]. 江南娱乐网页版入口官网下载安装学报, 2017, 30(6): 1224-1232.doi:10.3969/j.issn.0258-2724.2017.06.025
CHEN Qingshan, XU Yang, HE Xingxing. Heuristic Complete Algorithm for SAT Problem by Using Logical Deduction[J]. Journal of Southwest Jiaotong University, 2017, 30(6): 1224-1232. doi: 10.3969/j.issn.0258-2724.2017.06.025
Citation: CHEN Qingshan, XU Yang, HE Xingxing. Heuristic Complete Algorithm for SAT Problem by Using Logical Deduction[J].Journal of Southwest Jiaotong University, 2017, 30(6): 1224-1232.doi:10.3969/j.issn.0258-2724.2017.06.025

利用逻辑演绎求解SAT问题的启发式完全算法

doi:10.3969/j.issn.0258-2724.2017.06.025
基金项目:

国家自然科学基金资助项目(61673320,11526171,61305074)

中央高校基本科研业务费专项资金资助项目(2682017ZT12)

详细信息
    作者简介:

    陈青山(1982-),男,助教,博士研究生,研究方向为智能信息处理、自动推理,E-mail:qschen@home.swjtu.edu.cn

Heuristic Complete Algorithm for SAT Problem by Using Logical Deduction

    • 摘要:为解决可满足性(satisfiability problem,SAT)问题求解过程中分支决策效率不高的问题,提出了一种基于逻辑演绎分组(logical deduction group,LDG)的启发式完全算法.该算法通过选择剩余未满足子句参与逻辑演绎,得到一组局部可满足赋值序列,并引导求解器优先搜索赋值序列所在解空间;对于可满足问题,可以通过迭代调用演绎过程,将局部可满足解成组地扩充为全局可满足解,对于不可满足问题,如果演绎结果出现空子句,则可以直接判定.采用SAT国际竞赛的实例,与具有代表性的指数级变元状态独立下降和(exponential variable state independent decaying sum,EVSIDS)变量决策算法进行了对比测试,结果表明:在求解总问题数方面,LDG比EVSIDS多出42个;在求解速度方面,LDG对可满足问题的求解时间相较EVSIDS平均减少了22.8%,对不可满足问题的求解时间平均减少了17.8%,总平均时间减少了20.1%.

    • COOK S A. The complexity of theorem-proving procedures[C]//3rd Annual ACM Symposium on Theory of Computing. New York:ACM, 1971:151-158.
      DAVIS M, LOGEMANN G, LOVELAND D. A machine program for theoremproving[J]. Communications of the ACM, 1962, 5(7):394-397.
      MOSKEWICZ M W, MADIGAN C F, ZHAO Y. Chaff:engineering an efficient SAT solver[C]//Proceedings of the 38th Annual Design Automation Conference. New York:ACM, 2001:530-535.
      EÉN N, SÖENSSON N. An extensible SAT solver[C]//SAT 2003. Heidelberg:Springer, 2015:502-518.
      GOMES C P, SELMAN B, KAUTZ H.Boosting combinatorial search through randomization[C]//Proceeding of the Fifteenth National Conference on Artificial Intelligence. Madison:AAAI Press, 1998:431-437.
      GOLDBERG E, NOVIKOV Y.BerkMin:a fast and robust SATsolver[C]//Proceedings of Design, Automation and Test in Europe Conference. Los Alamitos:IEEE Computer Society Press, 2002:142-149.
      LEWIS M D T,SCHUBERT T, BECKER B. Speedup techniques utilized in modern SAT solvers[C]//International Conference in Theory and Applications of Satisfiability Testing. Heidelberg:Springer, 2005:437-443.
      RYAN L. Efficient algorithms for clause-learning SAT solvers[D]. Vancouver:Simon Fraser University, 2004.
      MARQUES-SILVA J P, LYNCE I, MALIK S. Conflict-driven clause learning SAT solvers[M]//In Handbook of Satisfiability. Amsterdam:IOS Press, 2009:127-149.
      MARQUES-SILVA J P, SAKALLAH K A. Grasp:a new search algorithm for satisfiability[C]//Proceedings of the 1996 IEEE/ACM International Conference onComputer-aided Design. Los Alamitos:IEEE Computer Society Press, 1996:220-227.
      BIERE A. Pico SAT essentials[J]. Journal on Satisfiability, Boolean Modeling and Computation, 2008, 4:75-97.
      AUDEMARD G, SIMON L. Glucose 2.3 in the SAT 2013 Competition[C]//Theory and Applications of Satisfiability Testing-SAT 2008. Heidelberg:Springer, 2013:42-43.
      BELOV A, DIEPOLD D, HEULE M J H, et al. SAT competition 2014 solver and benchmark descriptions. (2014-6-27)[2016-10-15]. https://helda.helsinki.fi/bitstream/handle/10138/135571/sc2014_proceedings.pdf?sequence=1.
      JEROSLOW R E, WANG J. Solving propositional satisfiability problems[J]. Annals of Mathematics and Artificial Intelligence, 1990:167-187.
      BURO M, KLEINE-BVING H.Report on a SAT competition[R]. Paderborn:University of Paderborn, 1992.
      FREEMAN J W. Improvements to propositional satisfiability search algorithms[D]. Philadelphia:University of Pennsylvania, 1995.
      LIANG J H, GANESH V,POUPART P, et al. Learning rate based branchingheuristic for SAT solvers[C]//In Theory and Applications of Satisfiability Testing-SAT 2016.[S.l.]:Springer, 2016:123-140.
      BIERE A, FROHLICH A. Evaluating CDCL variable scoring schemes[C]//In Theory and Applications of Satisfiability Testing-SAT 2015.[S.l.]:Springer, 2015:405-422.
      BIERE A. Adaptive restart strategies for conflict driven SAT solvers[C]//Theory and Applications of Satisfiability Testing-SAT 2008.Heidelberg:Springer, 2008:28-33.
      CHANGC L, LEE R C T. Symbolic logic and mechanical theorem proving[M]. New York:Academic Press, 1973:130-162.
      LOVELAND D W. A Linear Format for Resolution[M]. New York:Springer, 1970:147-162.
      LUCKHAM D. Refinements in Resolution Theory[M]. New York:Springer, 1970:163-190.
    • 加载中
    计量
    • 文章访问数:533
    • HTML全文浏览量:133
    • PDF下载量:85
    • 被引次数:0
    出版历程
    • 收稿日期:2017-03-22
    • 刊出日期:2017-12-25

    目录

      /

        返回文章
        返回
          Baidu
          map