• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

桥梁基础冲刷研究综述

向琪芪,李亚东,魏凯,王顺意,姚昌荣

downloadPDF
向琪芪, 李亚东, 魏凯, 王顺意, 姚昌荣. 桥梁基础冲刷研究综述[J]. 江南娱乐网页版入口官网下载安装学报, 2019, 54(2): 235-248. doi: 10.3969/j.issn.0258-2724.20170373
引用本文: 向琪芪, 李亚东, 魏凯, 王顺意, 姚昌荣. 桥梁基础冲刷研究综述[J]. 江南娱乐网页版入口官网下载安装学报, 2019, 54(2): 235-248.doi:10.3969/j.issn.0258-2724.20170373
XIANG Qiqi, LI Yadong, WEI Kai, WANG Shunyi, YAO Changrong. Review of Bridge Foundation Scour[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 235-248. doi: 10.3969/j.issn.0258-2724.20170373
Citation: XIANG Qiqi, LI Yadong, WEI Kai, WANG Shunyi, YAO Changrong. Review of Bridge Foundation Scour[J].Journal of Southwest Jiaotong University, 2019, 54(2): 235-248.doi:10.3969/j.issn.0258-2724.20170373

桥梁基础冲刷研究综述

doi:10.3969/j.issn.0258-2724.20170373
基金项目:国家自然科学基金资助项目(51708455)
详细信息
    作者简介:

    向琪芪(1990—),男,博士研究生,研究方向为桥梁基础局部冲刷,E-mail:xiangqiqi1990@qq.com

    通讯作者:

    李亚东(1956—),男,教授,博士生导师,研究方向为现代桥式与桥梁设计理论等,E-mail:yadongli2009@qq.com

  • 中图分类号:CT447

Review of Bridge Foundation Scour

    • 摘要:冲刷是导致桥梁结构破坏的关键因素之一,从机理、计算、模型、探测及防护、承载及变形等5个方面较为系统地对桥梁基础冲刷的研究和实践进行了综述. 首先,在总结现有桥梁基础冲刷机理的基础上,对比分析了已有冲刷计算公式,阐明不同公式的局限性;随后,通过综述桥梁基础冲刷在试验和数值方面的研究,指出模型试验及数值模拟方法存在的不足和问题;此外,讨论了桥梁基础冲刷探测方法及主要的冲刷防护措施,比较了各种探测方法的优缺点及各种防护措施的作用原理,概述了冲刷对桥墩承载及变形特性的影响;最后,指出了桥梁基础冲刷方面值得进一步研究的问题和发展方向.

    • 图 1桥墩附近扰动流场及冲刷形态示意

      Figure 1.Flow field and scour pattern around bridge pier

      图 2沉井基础附近涡流区和脊的细节

      Figure 2.Details of vortex zones and ridge for flow around bridge pier with caisson

      图 3主动防护措施

      Figure 3.Active countermeasures

      图 4被动防护措施

      Figure 4.Passive countermeasures

      表 1中美桥梁基础冲刷计算公式的优缺点对比

      Table 1.Advantages and disadvantages of calculation formulae of China and US

      计算公式 优点 缺点
      中国规范 清水冲刷和动床冲刷采用不同的计算公式,两者区分更加明显;修正式65-1和式65-2选择两者估算值中
      最不利的一种;与现场实测数据结果的拟合较好.
      参数较多,且大部分参数的取值存在较大的不确定性;同一公式两边的量纲不一致,不同公式右侧的量纲也不相同,公式经验性极强;未考虑漂流物墩前聚集对桥墩局部冲刷的影响;复杂群桩桥墩冲刷的计算结果对设计和工程实际的参考价值有限.
      美国规范 参数较少,简化,便于理解和应用;公式两边量纲一致,引入弗劳德数,使水力学方面的物理意义更明确;对于复杂群桩桥墩冲刷的叠加法,概念明确,实现了与简单桥墩冲刷的统一计算;能考虑漂浮物聚集对桥墩局部冲刷的影响. 未涉及河床泥沙颗粒对局部冲刷深度的影响,仅仅通过系数考虑河床地貌的影响;计算结果偏于保守;与现场实测数据的拟合误差较大.
      下载: 导出CSV

      表 2桥梁基础冲刷现有测量仪器对比

      Table 2.Comparison of existing instruments for monitoring bridge foundation scour

      探测仪器 优点 缺点或局限性 相对成本
      雷达 持续探测 操作耗时;需要专业培训
      声纳 持续精确探测 平缓的河流 (河口)
      声学多普勒电流分析仪 便携能测量速度分布和水深 不适用于泥沙浓度含量高的条件
      FBG传感器 河床连续监测 现场测试成功率有限
      编号的砖 易于获得;适用于高度湍流和快速流动 要求开挖河床;适用于临时河流
      SMC 易于操作 要求开挖河床;高维护和修理费用
      钢棒 易于操作 要求开挖河床;高维护和修理费用
      下载: 导出CSV

      表 3两种不同原理的冲刷措施对比

      Table 3.Comparison between two different scour countermeasures

      项目 主动防护 被动防护
      原理 改变水流特性、破坏涡流,减少冲刷效应 铺设保护层,保护下层免受冲刷
      工程措施 护圈、挡板、桥墩开缝、墩前排桩等 铺设防护层、抛石防护、扩大基础等
      优点 可以为不同位置条件选择不同的设计以获得满意的结果 最常用;使用方便;在多数情况下效果好
      缺点 特定的条件下需要特殊设计;成本增加和新结构的建设 难以保持保护层位置;引起额外的束缩冲刷
      下载: 导出CSV
    • DENG L, CAI C S. Applications of fiber optic sensors in civil engineering[J]. Structural Engineering and Mechanics, 2007, 25(5): 577-596.doi:10.12989/sem.2007.25.5.577
      HUNT E B. Monitoring scour critical bridge[R], Washington D. C.: Transportation Research Board, National Research Council, 2009
      XIONG W, CAI C S, KONG X. Instrumentation design for bridge scour monitoring using fiber bragg grating sensors[J]. Applied Optics, 2012, 51(5): 547-557.doi:10.1364/AO.51.000547
      LIANG F Y, BENNETT C, PARSONS R, et al. A literature review on behavior of scoured piles under bridges[C]//Proceadings of the 2009 International foundation Congress and Equipment Expo. Orlando: the International Foundation Congress & Equipment Expo, 2009: 482-489
      DENG L, CAI C S. Bridge scour:prediction,modeling,monitoring and countermeasures-review[J]. Practice Periodical on Structural Design and Construction, 2009, 15(2): 125-134.
      詹磊,董耀华,惠晓晓. 桥墩局部冲刷研究综述[J]. 水利电力科技,2007(3): 1-13.
      易仁彦. 桥梁坍塌事故的原因和风险分析[J]. 养护与管理,2016(4): 22-26.
      高冬光, 王亚玲. 桥涵水文[M]. 4版. 北京: 人民交通出版社, 2009
      MELVILLE B W, COLEMAN S E. Bridge scour[M]. Highlands Ranch: Water Resources Publications, 2000
      COLEMAN S E. Clearwater local scour at complex piers[J]. Journal of Hydraulic Engineering, 2005, 131(4): 330-334.doi:10.1061/(ASCE)0733-9429(2005)131:4(330)
      WANG C, YU X, LIANG F Y. A review of bridge scour:mechanism,estimation,monitoring and countermeasures[J]. Natural Hazaids, 2017, 87(3): 1-26.
      BABU M R, RAO S N, SUNDAR V. Current-induced scour around a vertical pile in cohesive soil[J]. Ocean Engineering, 2003, 30(7): 893-920.doi:10.1016/S0029-8018(02)00063-X
      WANG C, YU X, LIANG F Y. Erosion mechanism of local scour around cushioned caisson on reinforced ground[J]. Marine Georesources & Geotechnology, 2017, 35(7): 1028-1036.
      MELVILLE B M. Local scour at bridge sites[D]. New Zealand: University of Auckland, 1975
      ETTEMA R. Scour at bridge piers[D]. New Zealand: University of Auckland, 1980
      VEERAPPADEVARU G, RAMASWAMYIYENGER T, JAGADEESH T R. Temporal variation of vortex scour process around caisson piers[J]. Journal of Hydraulic Research, 2012, 50(2): 200-207.doi:10.1080/00221686.2012.666832
      尹学良. 清水冲刷河床粗化研究[J]. 水利学报,1963(1): 17-27.
      秦荣昱,胡春宏. 河床冲刷粗化研究进展[J]. 泥沙研究,1997(2): 79-82.
      韩其为, 向熙瑰, 王玉成. 床沙粗化[C]//第二次河流泥沙国际学术讨论会论文集. 北京: 水利电力出版社, 1983: 356-367
      BRIAUD J L, TING F C K, CHEN H C, et al. Erosion function apparatus for scour rate predictions[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2001, 127(2): 105-113.
      中华人民共和国行业标准. 铁路工程水文勘测设计规范: TB10017—99[S]. 北京: 中国铁道出版社, 1999
      中华人民共和国行业标准. 公路工程水文勘测设计规范: JTG C30—2002[S]. 北京: 人民交通出版社, 2002
      RICHARDSON E V, DAVIS S R. Evaluating scour at bridges: 4thediton[M]. Washington D. C.: Federal Highway Administration, 2001
      MELVILLE B W, SUTHERLAND A J. Design method for local scour at bridge piers[J]. Journal of Hydraulic Engineering, 1988, 114(10): 1210-1226.doi:10.1061/(ASCE)0733-9429(1988)114:10(1210)
      MELVILLE B W. Pier and abutment scour:integrated approach[J]. Journal of Hydraulic Engineering, 1997, 123(2): 125-136.doi:10.1061/(ASCE)0733-9429(1997)123:2(125)
      张佰战,李付军. 桥墩局部冲刷计算研究[J]. 中国铁道科学,2004,25(2): 48-51.doi:10.3321/j.issn:1001-4632.2004.02.010
      梁利博,杨小亭,张新燕. 圆柱桥墩局部冲刷的试验研究[J]. 中国农村水利水电,2010(1): 104-109.

      LIANG Libo, YANG Xiaoting, ZHANG Xinyan. Experimental research on cylinder pier local scour[J]. China Rural Water and Hydropower, 2010(1): 104-109.
      NEIL C R. River bed scour: a review for bridge engineers[M]. Calgary: [s.n.], 1964: 1-37
      SHEN H W, SCHNEIDER V R, KARAKI S. Local scour around bridge piers[J]. Proc. ASCE, 1969, 95(6): 1919-1940.
      JAIN S C, FISCHER E E. Scour around circular bridge piers at high Froude numbers[R]. Washington D. C.: Federal Highway Administration, 1979
      SHEPPARD D M, MILLER W. Live-bed local pier scour experiments[J]. Journal of Hydraulic Engineering, 2006, 132(7): 635-642.doi:10.1061/(ASCE)0733-9429(2006)132:7(635)
      QI Meilan, LI Jinzhao, CHEN Qigang. Comparison of existing equations for local scour at bridge piers:parameter influence and validation[J]. Natural Hazards, 2016, 82(3): 2089-2105.doi:10.1007/s11069-016-2287-z
      SHEPPARD D M, MILLER W. Evaluation of existing equations for local scour at bridge piers[J]. Journal of Hydraulic Engineering, 2014, 140(1): 14-23.doi:10.1061/(ASCE)HY.1943-7900.0000800
      LIANG Fayun, WANG C, HUANG M, et al. Experimental observations and evaluations of formulae for local scour at pile groups in steady currents[J]. Marine Georesources & Geotechnology, 2017, 35(2): 245-255.
      LEE T L, JENG D S, ZHANG G H, et al. Neural network modeling for estimation of scour depth around bridge piers[J]. Journal of Hydrodynamics, 2007, 19(3): 378-386.doi:10.1016/S1001-6058(07)60073-0
      CARDOSO A H, BETTESS R. Effect of time and channel geometry on scour at bridge abutments[J]. Journal of Hydraulic Engineering, 1999, 125(4): 388-399.doi:10.1061/(ASCE)0733-9429(1999)125:4(388)
      OLIVETO G, HAGER W H. Temporal evolution of clear-water pier and abutment scour[J]. Journal of Hydraulic Engineering, 2002, 128(9): 811-820.doi:10.1061/(ASCE)0733-9429(2002)128:9(811)
      CHANG W Y, LAI J S, YEN C L. Evolution of scour depth at circular bridge piers[J]. Journal of Hydraulic Engineering, 2004, 130(9): 905-913.doi:10.1061/(ASCE)0733-9429(2004)130:9(905)
      MIA M F, NAGO H. Design method of time-dependent local scour at circular bridge pier[J]. Journal of Hydraulic Engineering, 2003, 129(6): 420-427.doi:10.1061/(ASCE)0733-9429(2003)129:6(420)
      YANMAZ A M, ALTINBILEK H D. Study of time-dependent local scour around bridge piers[J]. Journal of Hydraulic Engineering, 1991, 117(10): 1247-1268.doi:10.1061/(ASCE)0733-9429(1991)117:10(1247)
      KOTHYARI U, GARDE R, RANGA R K. Temporal variation of scour around circular bridge piers[J]. Journal of Hydraulic Engineering, 1992, 118(8): 1091-1106.doi:10.1061/(ASCE)0733-9429(1992)118:8(1091)
      MELVILLE, B W, CHIEW Y M. Time scale for local scour at bridge piers[J]. Journal of Hydraulic Engineering, 1999, 125(1): 59-65.doi:10.1061/(ASCE)0733-9429(1999)125:1(59)
      李成才. 桥墩局部冲刷试验及计算理论研究[D]. 南京: 河海大学, 2007
      刘谨,刘芳亮,冯良平,等. 某跨海大桥桥墩基础冲刷试验研究[J]. 公路,2012(10): 61-65.doi:10.3969/j.issn.0451-0712.2012.10.014
      ZHAO Ming, ZHU Xiansong, CHENG Liang, et al. Experimental study of local scour around subsea caissons in steady currents[J]. Coastal Engineering, 2012, 60(1): 30-40.
      ATAIE-ASHTIANI B, BEHESHTI A A. Experimental investigation of clear-water local scour at pile groups[J]. Journal of Hydraulic Engineering, 2006, 132(10): 1100-1104.doi:10.1061/(ASCE)0733-9429(2006)132:10(1100)
      卢中一, 高正荣, 杨程生. 大型沉井基础施工过程中局部冲刷试验研究[C]//第十四届中国海洋(岸)工程学术讨论会论文集(下册). 北京: 海洋出版社, 2009, 1139-1146
      张新燕,吕宏兴,沈波. 圆柱桥墩局部冲刷机理试验研究[J]. 水利水运工程学报,2012(2): 34-41.doi:10.3969/j.issn.1009-640X.2012.02.006

      ZHANG Xinyan, LÜ Hongxing, SHEN Bo. Experimental studies on local scour mechanism of cylinder bridge piers[J]. Hydro-Science and Engineering, 2012(2): 34-41.doi:10.3969/j.issn.1009-640X.2012.02.006
      梁发云,王琛,黄茂松,等. 沉井基础局部冲刷形态的体型影响效应与动态演化[J]. 中国公路学报,2013,29(9): 779-782.

      LIANG Fayun, WANG Chen, HUANG Maosong, et al. Scale effects on local scour configurations around caisson foundation and dynamic evolution[J]. China Journal of Highway and Transport, 2013, 29(9): 779-782.
      BAKER C J. The position of points of maximum and minimum shear stress upstream of cylinders mounted normal to flat plates[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1985, 18: 263-274.doi:10.1016/0167-6105(85)90085-6
      SUMER B M, FREDSØE J. The mechanics of scour in the marine environment[M]. Singapore: World Scientific, 2002: 149-228
      ZHAO M, CHENG L. Numerical investigation of local scour below a vibrating pipeline under steady currents[J]. Coastal Engineering, 2010, 57: 397-406.doi:10.1016/j.coastaleng.2009.11.008
      ZHAO M, CHENG L, ZANG Z. Experimental and numerical investigation of local scour around a submerged vertical circular cylinder in steady currents[J]. Coastal Engineering, 2010, 57: 709-721.doi:10.1016/j.coastaleng.2010.03.002
      LU J Y, SHI Z Z, HONG J H, et al. Temporal variation of scour depth at non-uniform cylindrical piers[J]. Journal of Hydraulic Engineering, 2011, 137(1): 45-56.doi:10.1061/(ASCE)HY.1943-7900.0000272
      林海峰,王萍. 泰州大桥夹江桥动床模型试验研究[J]. 中国工程学科,2010,12(4): 86-89.
      ETTEMA R, MELVILLE B W, BARKDOLL B. Scale effect in pier-scour experiments[J]. Journal of Hydraulic Engineering, 1998, 124(6): 639-642.doi:10.1061/(ASCE)0733-9429(1998)124:6(639)
      ETTEMA R, KIRKIL G, MUSTE M. Similitude of large-scale turbulence in experiments on local scour at cylinders[J]. Journal of Hydraulic Engineering, 2006, 132(1): 33-40.doi:10.1061/(ASCE)0733-9429(2006)132:1(33)
      LEE S O, STURM T. Scaling issues for laboratory modeling of bridge pier scour[C]//Proceedings of the 4th International Conference on Scour and Erosion. Tokyo: ISSMGE, 2008: 111-115
      HUANG Wenrui, YANG Qiping, XIAO Hong. CFD modeling of scale effects on turbulence flow and scour around bridge piers[J]. Computers & Fluids, 2009, 38(5): 1050-1058.
      韦雁机,叶银灿,吴珂,等. 桩周局部冲刷三维数值模拟[J]. 海洋工程,2009,27(4): 61-66.

      WEI Yanji, YE Yincan, WU Ke, et al. 3D numerical modeling of flow and scour around a circular pile[J]. The Ocean Engineering, 2009, 27(4): 61-66.
      贠鹏. 桥墩局部冲刷的数值模拟研究[D]. 青岛: 中国海洋大学, 2012
      ZHU Zhiwen, LIU Zhenqing. CFD prediction of local scour hole around bridge piers[J]. Journal of Central South University, 2012, 19(1): 273-281.doi:10.1007/s11771-012-1001-x
      XIONG W, CAI C S, KONG B, et al. CFD simulation and analyses for bridge-scour development using a dynamic-mesh updating technique[J]. Journal of Computing in Civil Engineering, 2016, 30(1): 1-10.
      SAGHRAVANI S F, AZHARI A. Simulation of clear water local scour around a group of bridge piers using an eulerian 3D,two-phase model[J]. Progress in Computational Fluid Dynamics, 2012, 12(5): 333-341.doi:10.1504/PCFD.2012.049097
      KIM H S, NABI M, KIMURA I, et al. Numerical investigation of local scour at two adjacent cylinders[J]. Advances in Water Resources, 2014, 70: 131-147.doi:10.1016/j.advwatres.2014.04.018
      BURKOW M, GRIEBEL M. A full three dimensional numerical simulation of the sediment transport and the scouring at a rectangular obstacle[J]. Computers & Fluids, 2015, 125: 1-10.
      OLSEN N R B, MELAEN M C. Three-dimensional calculation of scour around cylinders[J]. Journal of Hydraulic Engineering, 1993, 119(9): 1048-1054.doi:10.1061/(ASCE)0733-9429(1993)119:9(1048)
      LEO C, VAN R. Application of sediment pick-up function[J]. Journal of Hydraulic Engineering, 1986, 112(9): 867-874.doi:10.1061/(ASCE)0733-9429(1986)112:9(867)
      LEO C, VAN R, HENK V R, et al. Field verification of 2D and 3D suspended sediment Models[J]. Journal of Hydraulic Engineering, 1990, 116(10): 1270-1288.doi:10.1061/(ASCE)0733-9429(1990)116:10(1270)
      OLSEN N R B. Three-dimensional CFD modeling of self-forming meandering channel[J]. Journal of Hydraulic Engineering, 2003, 129(5): 366-372.doi:10.1061/(ASCE)0733-9429(2003)129:5(366)
      YOUNG G K, DOU X, SAFFARINIA K, et al. Testing abutment scour model[C]//Water Resources Engineering Conference. Virginia: ASCE, 1998: 180-185
      KASSEM A, SALAHELDIN T M, IMRAN J, et al. Numerical modeling of scour in cohesive soils around artificial rock island of cooper river bridge[J]. Transportation Research Record:Journal of the Transportation Research Board, 2003, 1851: 45-50.doi:10.3141/1851-05
      MILLARD S G, BUNGEY J H, THOMAS C, et al. Assessing bridge pier scour by radar[J]. NDT & E International, 1997, 31(4): 251-258.
      PARK I, LEE J, CHO W. Assessment of bridge scour and riverbed variation by a ground penetrating radar[C]//10th International Conference on Ground Penetrating Radar. Delft: IEEE, 2005, 411-414
      FALCO F D, MELE R. The monitoring of bridges for scour by sonar and sediment[J]. NDT &E International, 2002, 35(2): 117-123.
      HUNT B E. Scour monitoring programs for bridge health[C]//Proceedings of 6th International Bridge Engineering Conference. Boston: National Academy of Engineering, 2005, 531-536
      YU X, ZABILANSKY L J. Time domain reflectometry for automatic bridge scour monitoring[J]. Geotechnical Special Publication, 2006, 149: 152-159.
      YU Xinbao, YU Xiong. Algorithm for time domain reflectometry bridge scour measurement system[C]//Proceeding of the 7th International Symposia on Field Measurements in Geomechanics. Boston: ASCE, 2007: 1-10
      LIN Y B, CHANG K C, LAI J S, et al. Application of optical fiber sensors on local scour monitoring[C]//Proceeding of IEEE Sensors. Vienna: IEEE, 2004, 832-835
      LIN Y B, CHEN J C, CHANG K C, et al. Real-time monitoring of local scour by using fiber Bragg grating sensors[J]. Smart Materials & Structures, 2005, 14(4): 664-670.
      LU J Y, HONG J H, SU C C, et al. Field measurements and simulation of bridge scour depth variation during floods[J]. Journal of Hydraulic Engineering, 2008, 134(6): 810-821.doi:10.1061/(ASCE)0733-9429(2008)134:6(810)
      梁发云,王琛. 桥墩基础局部冲刷防护技术的对比分析[J]. 结构工程师,2014,30(5): 779-782.

      LIANG Fayun, WANG Chen. Review on countermeasures to bridge piers from local scour[J]. Structural Engineers, 2014, 30(5): 779-782.
      LAGASSE P F, CLOPPER P E, ZEVENBERGEN L W, et al. NCHRP report 593: countermeasures to protect bridge piers from scour[R]. Washington D. C.: Transportation Research Board, 2007
      BARKDOLL B D, ETTEMA R, MELVILLE B W. NCHRP report 587: countermeasures to protect bridge abutments from scour[R]. Washington D. C.: Transportation Research Board, 2007
      CHIEW Y M. Scour protection at bridge piers[J]. Journal of Hydraulic Engineering, 1992, 118(9): 1260-1269.doi:10.1061/(ASCE)0733-9429(1992)118:9(1260)
      ZARRATI A R, GHOLAMI H, MASHAHIR M B. Application of collar to control scouring around rectangular bridge piers[J]. Journal of Hydraulic Research, 2004, 42(1): 97-103.doi:10.1080/00221686.2004.9641188
      KUMAR V, RANGARAJU K G, VITTAL N. Reduction of local scour around bridge piers using slot and collar[J]. Journal of Hydraulic Engineering, 1999, 125(12): 1302-1305.doi:10.1061/(ASCE)0733-9429(1999)125:12(1302)
      MELVILLE B W, HADFIELD A C. Use of sacrificial piles as pier scour countermeasures[J]. Journal of Hydraulic Engineering, 1999, 125(11): 1221-1224.doi:10.1061/(ASCE)0733-9429(1999)125:11(1221)
      HAQUE A, RAHMAN M M, ISLAM G T, et al. Scour mitigation at bridge piers using sacrificial piles[J]. International Journal of Sediment Research,China, 2007, 22(1): 49-59.
      TAFAROJNORUZ A, GAUDIO R. Evaluation of flow-altering countermeasures against bridge pier scour[J]. Journal of Hydraulic Engineering, 2012, 138(3): 297-305.doi:10.1061/(ASCE)HY.1943-7900.0000512
      WANG C, LIANG F Y, YU X. Experimental and numerical investigation of sacrificial piles to diminish local scour around pile groups[J]. Natural Hazards, 2017, 85: 1417-1435.doi:10.1007/s11069-016-2634-0
      LAGASSE P F, CLOPPER P E, ZEVENBERGEN L W, et al. NCHRP report 593: countermeasures to protect bridge piers from scour[R]. Washington D. C.: Transportation Research Board, 2007
      LAUCHLAN C S, MELVILLE B W. Riprap protection at bridge piers[J]. Journal of Hydraulic Engineering, 2001, 127(5): 412-418.doi:10.1061/(ASCE)0733-9429(2001)127:5(412)
      LIM F H, CHIEW Y M. Parametric study of riprap failure around bridge piers[J]. Journal of Hydraulic Research, 2001, 39(1): 61-72.doi:10.1080/00221680109499803
      PARKER G, TOROESCOBAR C, VOIGT R L. Countermeasures to protect bridge piers from scour[R]. Minnesota: University of Minnesota, 1998
      LAGASSE P F, ZEVENBERGEN L W, SCHALL J D, et al. Bridge scour and stream instability countermeasures[R]. Washington D. C.: FHWA, 2001
      LAGASSE P F. 1998 Scanning review of European practice for bridge scour and stream instability countermeasures[R]. Washington D. C.: Transportation Research Board of the National Academies, 1999
      BEZGIN N O. Finite element modeling of soil structure interaction for drilled shaft foundation[D]. New Brunswick: The State University of New Jersey, 2005
      AVENT R R, ALAWADY M. Bridge scour and substructure deterioration:case study[J]. Journal of Bridge Engineering, 2005, 10(3): 247-254.doi:10.1061/(ASCE)1084-0702(2005)10:3(247)
      DANIELS J, HUGHES D, RAMEY G E, et al. Effects of bridge pile bent geometry and levels of scour and P loads on bent pushover loads in extreme flood/scour events[J]. Practice Periodical on Structural Design and Construction, 2007, 12(2): 122-134.doi:10.1061/(ASCE)1084-0680(2007)12:2(122)
      HUGHES D, RAMEY G E, HUGHES M L. Bridge pile bent number of piles and X-bracing system:impact on pushover capacity as scour increases[J]. Practice Periodical on Structural Design and Construction, 2007, 12(2): 82-95.doi:10.1061/(ASCE)1084-0680(2007)12:2(82)
      LIN C, BENNETT C, HAN J, et al. Scour effects on the response of laterally loaded piles considering stress history of sand[J]. Computers & Geotechnics, 2010, 37(7): 1008-1014.
      LIN C. Evaluation of lateral behavior of pile-supported bridges under scour conditions[D]. Kansas: University of Kansas, 2012
      BROMS B B. Lateral resistance of piles in cohesionless soils[J]. Journal of the Soil Mechanics and Foundations Division, 1964, 90(SM2,Part 1): 27-63.
      BROMS B B. Lateral resistance of piles in cohesionless soils[J]. Journal of the Soil Mechanics and Foundations Division, 1964, 90(SM3,Part 1): 123-156.
      POULOS H G. Behavior of laterally loaded piles:I-single piles[J]. Journal of the Soil Mechanics and Foundations Division, 1971, 97(5): 711-731.
      HETÉNYI M. Beams on elastic foundation; theory with applications in the fields of civil and mechanical engineering[D]. Michigan: The University of Michigan Press, 1964
      REESE L C, VAN IMPE W F, HOLTZ R D. Single piles and pile groups under lateral loading[J]. Applied Mechanics Reviews, 2000, 55(1): 9-10.
      NI S H, HUANG Y H, LO K F. Numerical investigation of the scouring effect on the lateral response of piles in sand[J]. Journal of Performance of Constructed Facilities, 2011, 26(3): 320-325.
      KUO Y S, ACHMUS M, KAO C S. Practical design considerations of monopile foundations with respect to scour[C]//Proceedings of Global Wind Power Conference 2008. Beijing: Global Wind Energy Council, 2008: 29-31
      LI F, HAN J, LIN C. Effect of scour on the behavior of laterally loaded single piles in marine clay[J]. Marine Georesources & Geotechnology, 2013, 31(3): 271-289.
      LIN C, HAN J, BENNETT C, et al. Analysis of laterally loaded piles in sand considering scour hole dimensions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(6): 04014024.doi:10.1061/(ASCE)GT.1943-5606.0001111
      REESE L C, COX W R, KOOP F D. Analysis of laterally loaded pile in sand[C]//Proceedings of the 6th Annual Offshore Technology Conference. Houston: OTC, 1974: 95-104
      杨晓峰,张陈蓉,袁聚云. 砂土中考虑冲刷的水平受荷桩等效应变楔方法[J]. 岩土力学,2015,36(10): 2946-2950.

      YANG Xiaofeng, ZHANG Chenrong, YUAN Juyun. Equivalent-strain wedge method for laterally loaded pile in sand considering scouring effect[J]. Rock and Soil Mechanics, 2015, 36(10): 2946-2950.
      ASHOUR M, NORRIS G, PILLING P. Lateral loading of a pile in layered soil using the strain wedge model[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(4): 303-315.doi:10.1061/(ASCE)1090-0241(1998)124:4(303)
      DIAMANTIDIS D, ARNESEN K. Scour effects in piles structures-a sensitivity analysis[J]. Ocean Engineering, 1986, 13(5): 497-502.doi:10.1016/0029-8018(86)90035-1
      ACHMUS M, KUO Y S, ABDELRAHMAN, K. Numerical investigation of scour effect on lateral resistance of windfarm monopiles[C]//20th International Offshore and Polar Engineering Conference. Beijing: ISOPE, 2010: 619-623
      MCCONNELL J R, CANN, M. Assessment of bridge strength and stability under scour conditions[C]//Proceedings of ASCE SEI 2010 Structures Congress. Orlando: ASCE, 2010: 121-132
      FOTI S, SABIA D. Influence of foundation scour on the dynamic response of an existing bridge[J]. Journal of Bridge Engineering, 2011, 16(2): 295-304.doi:10.1061/(ASCE)BE.1943-5592.0000146
    • 加载中
    图(4)/ 表(3)
    计量
    • 文章访问数:1578
    • HTML全文浏览量:756
    • PDF下载量:226
    • 被引次数:0
    出版历程
    • 收稿日期:2017-05-09
    • 修回日期:2018-04-25
    • 网络出版日期:2018-10-10
    • 刊出日期:2019-04-01

    目录

      /

        返回文章
        返回
          Baidu
          map