• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

高速铁路有砟道床横向阻力特性与固化技术

井国庆,贾文利,付豪,卢炜

downloadPDF
井国庆, 贾文利, 付豪, 卢炜. 高速铁路有砟道床横向阻力特性与固化技术[J]. 江南娱乐网页版入口官网下载安装学报, 2019, 54(5): 1087-1092. doi: 10.3969/j.issn.0258-2724.20170480
引用本文: 井国庆, 贾文利, 付豪, 卢炜. 高速铁路有砟道床横向阻力特性与固化技术[J]. 江南娱乐网页版入口官网下载安装学报, 2019, 54(5): 1087-1092.doi:10.3969/j.issn.0258-2724.20170480
JING Guoqing, JIA Wenli, FU Hao, LU Wei. High-Speed Ballasted Railway Track Lateral Resistance Characteristics and Reinforcements[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1087-1092. doi: 10.3969/j.issn.0258-2724.20170480
Citation: JING Guoqing, JIA Wenli, FU Hao, LU Wei. High-Speed Ballasted Railway Track Lateral Resistance Characteristics and Reinforcements[J].Journal of Southwest Jiaotong University, 2019, 54(5): 1087-1092.doi:10.3969/j.issn.0258-2724.20170480

高速铁路有砟道床横向阻力特性与固化技术

doi:10.3969/j.issn.0258-2724.20170480
基金项目:国家自然科学基金资助项目(51578051)
详细信息
    作者简介:

    井国庆(1979—),男,副教授,博士,研究方向为轨道结构及轨道力学,电话:15901173048,E-mail:gqjing@bjtu.edu.cn

  • 中图分类号:U213.772

High-Speed Ballasted Railway Track Lateral Resistance Characteristics and Reinforcements

    • 摘要:高速铁路有砟道床存在发生飞砟的可能性,且飞砟概率随着砟肩堆高增加而增加,因此部分国家降低砟肩堆高,甚至采用平肩结构,但随之会引起道床阻力降低. 通过研究砟肩堆高对道床阻力的影响,同时在此基础上,提出了聚氨酯局部固化方案,包含枕心固化和枕端固化,均在增加平肩式道床横向阻力的同时不影响捣固维修作业. 道床横向阻力试验结果表明:与砟肩堆高150 mm相比,采用平肩式道床横向阻力降低30%;喷涂200 mm和300 mm聚氨酯的情况下,采用枕端固化的道床横向阻力分别可提高阻力约41%、60%,枕心固化可分别提高约31%、40%,综合固化(枕心和枕端固化同时采用)可提高阻力约70%、100%.

    • 图 1道砟颗粒级配

      Figure 1.Particle Size Distribution (PSD) for test

      图 2轨枕端部道砟受力情况概况

      Figure 2.Disturbed zone of shoulder ballast

      图 3聚氨酯喷涂范围

      Figure 3.Area of polyurethane spraying

      图 4聚氨酯喷涂

      Figure 4.Polyurethane injection

      图 5道床横向阻力测试

      Figure 5.Lateral resistance tests

      图 6砟肩堆高影响

      Figure 6.Influence of shoulder height

      图 7枕端固化影响

      Figure 7.Influence of shoulder reinforcement

      图 8枕心固化影响

      Figure 8.Influence of crib-ballast reinforcement

      图 9综合固化影响

      Figure 9.Influence of synthetical reinforcement

      表 1聚氨酯参数

      Table 1.Parameters of polyurethane

      参数 数值
      密度/(g•cm–3 1.13
      拉伸强度/MPa 14.2
      断裂伸长率/% 20
      撕裂强度/(N•mm–1 60
      硬度(邵D) 46
      下载: 导出CSV

      表 2试验工况

      Table 2.Testing condition

      工况 砟肩堆高
      /mm
      枕心高度
      /mm
      固化
      方式
      喷涂深度
      /mm
      1 150 0
      2 0 – 40
      3 0 – 40 枕端固化 200
      4 0 – 40 枕端固化 300
      5 0 – 40 枕心固化 200
      6 0 – 40 枕心固化 300
      7 0 – 40 综合固化 200
      8 0 – 40 综合固化 300
      下载: 导出CSV

      表 3聚氨酯用量

      Table 3.Quantity of polyurethane

      固化方式 粘结深度/mm 聚氨酯用量/kg
      枕端固化 200 0.26
      300 0.82
      枕心固化 200 0.10
      300 0.32
      综合固化 200 0.36
      300 1.14
      下载: 导出CSV
    • TUTUMLUER E, HUANG H, HASHASH Y. Aggregate shape effects on ballast tamping and railroad track lateral stability[C]// AREMA Annual Conference.Loisville: AREMA, 2006: 17-20
      井国庆. 铁路有砟道床[M]. 北京: 中国铁道出版社, 2012: 15-70
      ESVELD C. Modern railway track[M]. Delft: MRT-Production, 2001: 52-58
      高亮,罗奇,徐旸,等. 道床断面尺寸对道床横向阻力的影响[J]. 江南娱乐网页版入口官网下载安装学报,2014,49(6): 954-960.doi:10.3969/j.issn.0258-2724.2014.06.004

      GAO Liang, LUO Qi, XU Yang. Effects of ballast bed section dimension on its lateral resistance[J]. Journal of Southwest Jiaotong University, 2014, 49(6): 954-960.doi:10.3969/j.issn.0258-2724.2014.06.004
      刘浩,谢铠泽,王平,等. 道床阻力区域分布及退化对钢轨纵向力的影响[J]. 江南娱乐网页版入口官网下载安装学报,2017,52(1): 98-105.doi:10.3969/j.issn.0258-2724.2017.01.014

      LIU Hao, XIE Kaize, WANG Ping, et al. Effect of regional distribution and degradation of ballast resistance on longitudinal force of rail[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 98-105.doi:10.3969/j.issn.0258-2724.2017.01.014
      国家铁路局. 高速铁路设计规范: TB 10621—2014[S]. 北京: 中国铁道出版社, 2014
      井国庆,王子杰,林建. 基于力学平衡原理飞砟机理与防治研究[J]. 铁道科学与工程学报,2014(6): 96-101.doi:10.3969/j.issn.1672-7029.2014.06.017

      JING Guoqing, WANG Zijie, LIN Jian. Mechanical equilibriu m analysis of ballast flight mechanis m and counteracting measures[J]. Journal of Railway Science and Engineering, 2014(6): 96-101.doi:10.3969/j.issn.1672-7029.2014.06.017
      SAAT M R, BEDINIJACOBINI F, TUTUMLUER E, et al. Identification of high-speed rail ballast flight risk factors and risk mitigation strategies[R]. Sydeny: 10th World Congress on Railway Research, 2013
      QUINN A D. A full-scale experimental and modelling study of ballast flight under high-speed trains[J]. Proceedings of the Institution of Mechanical Engineers Part f Journal of Rail & Rapid Transit, 2010, 224(2): 61-74.
      LE P L, POWRIE W. Contribution of base,crib,and shoulder ballast to the lateral sliding resistance of railway track:a geotechnical perspective[J]. Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail & Rapid Transit, 2011, 225(2): 113-129.
      WANG Z J, JING G Q, LIU G X. Analysis on railway ballast-glue micro-characteristics[J]. Applied Mechanics & Materials, 2013(477/478): 535-538.
      STJEPAN L. Track stability using ballast bonding method[J]. Slovenski Kongres O Cestah In Prometu, 2010, 10: 333-340.
      WOODWARD P K, KENNEDY J, MEDERO G M, et al. Maintaining absolute clearances in ballasted railway tracks using in situ three-dimensional polyurethane GeoComposites[J]. Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail & Rapid Transit, 2012, 226(3): 257-271.
      THOMAS S, WOODWARD P, LAGHROUCHE O. Influence of stiffening ballasted track bed overlying a masonry arch bridge using a polyurethane polymer material[J]. Construction & Building Materials, 2015, 92: 111-117.
      KRUGLIKOV A A, YAVNA V A, ERMOLOV Y M. Strengthening of the railway ballast section shoulder with two-component polymeric binders[J]. Transportation Geotechnics, 2017, 11: 133-143.doi:10.1016/j.trgeo.2017.05.004
      DERSCH M, TUTUMLUER E, BOWER C P. Polyurethane coating of railroad ballast aggregate for improved performance[C]// Joint Rail Conference. Urbana: American Society of Mechanical Engineers, 2010: 337-342
      郄录朝,王红,许永贤. 聚氨酯固化道床的力学性能试验研究[J]. 铁道建筑,2015(1): 107-112.doi:10.3969/j.issn.1003-1995.2015.01.24

      QIE Luchao, WANG Hong, XU Yongxian. Experimental study on mechanical performance of polyurethane solidified ballast bed[J]. Railway Engineering, 2015(1): 107-112.doi:10.3969/j.issn.1003-1995.2015.01.24
      PLOOY R F D. Characterisation of rigid polyurethane foam reinforced ballast through cyclic loading box tests[D]. Pretoria: University of Pretoria, 2016
      铁道部运输局. 2012 高速铁路有砟轨道线路维修规则(试行)[S]. 北京: 中国铁道出版社, 2012
      LICHTBERGER B. the lateral resistance of the track[J]. European Railway Review, 2007, 3: 1-7.
      PEN L L, BHANDARI A R, POWRIE W. Sleeper end resistance of ballasted railway tracks[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2014, 140(5): 04014004-1-04014004-14.
    • 加载中
    图(9)/ 表(3)
    计量
    • 文章访问数:658
    • HTML全文浏览量:372
    • PDF下载量:23
    • 被引次数:0
    出版历程
    • 收稿日期:2017-06-30
    • 修回日期:2017-09-13
    • 网络出版日期:2019-02-23
    • 刊出日期:2019-10-01

    目录

      /

        返回文章
        返回
          Baidu
          map