• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

碰撞前车速计算误差的成因及处理方法

张健,张鑫,李江

downloadPDF
张健, 张鑫, 李江. 碰撞前车速计算误差的成因及处理方法[J]. 江南娱乐网页版入口官网下载安装学报, 2019, 54(5): 1073-1078. doi: 10.3969/j.issn.0258-2724.20170562
引用本文: 张健, 张鑫, 李江. 碰撞前车速计算误差的成因及处理方法[J]. 江南娱乐网页版入口官网下载安装学报, 2019, 54(5): 1073-1078.doi:10.3969/j.issn.0258-2724.20170562
ZHANG Jian, ZHANG Xin, LI Jiang. Origin and Solution of Pre-crash Speed Calculation Error[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1073-1078. doi: 10.3969/j.issn.0258-2724.20170562
Citation: ZHANG Jian, ZHANG Xin, LI Jiang. Origin and Solution of Pre-crash Speed Calculation Error[J].Journal of Southwest Jiaotong University, 2019, 54(5): 1073-1078.doi:10.3969/j.issn.0258-2724.20170562

碰撞前车速计算误差的成因及处理方法

doi:10.3969/j.issn.0258-2724.20170562
基金项目:国家自然科学基金资助项目(51178001)
详细信息
    作者简介:

    张健(1961—),男,教授,博士,研究方向为车辆安全,E-mail:zhjdp@126.com

  • 中图分类号:U491.3

Origin and Solution of Pre-crash Speed Calculation Error

    • 摘要:为准确计算汽车碰撞事故碰撞前车速,基于动量守恒定理的汽车碰撞事故模型,在事故分析中采用反推法求解. 根据事故现场勘查信息,应用运动学公式计算碰撞后车速,再将碰撞后车速代入模型计算碰撞前车速. 以实车碰撞试验对模型计算结果进行检验后,发现用模型计算的碰撞前车速存在误差. 为此以实车碰撞试验为对象,根据模型的求解过程和误差的传递过程,研究了碰撞前车速误差的成因和处理方法,以提高交通事故分析的准确性. 首先,应用矩阵理论研究了碰撞前车速误差的形成原因;其次,应用反推迭代算法建立了碰撞前车速误差的处理方法;最后,通过实例应用验证了该方法的可行性. 研究结果和实例应用表明:用运动学公式计算碰撞后车速所产生的误差是造成碰撞前车速误差的决定性原因,只需对碰撞后车速误差进行简单的1次处理就能使应用该模型计算碰撞前车速所产生的误差归0.

    • 图 1模型坐标系

      Figure 1.Coordinate systems of models

      图 2模型1对应的试验现场

      Figure 2.Trial scene of model 1

      图 3模型2对应的试验现场

      Figure 3.Trial scene of model 2

      图 4模型1对应的方向角误差

      Figure 4.Direction angle error of model 1

      图 5模型2对应的方向角误差

      Figure 5.Direction angle error of model 2

      表 1试验数据

      Table 1.Trial data

      试验参数 车辆1 车辆2
      mj/kg 977 976
      ρj/m 1.220 1.230
      laj)/m −0.530 1(−0.530 1) −0.075 2(−0.075 2)
      ljnbj)/m −0.984 4(0.984 4) 0.739 4(−0.739 4)
      vjn/(m•s−1 −16.581 3(−16.581 3) −4.378 7(−4.378 7)
      v/(m•s−1 −2.284 8(2.284 8) 17.790 0(−17.790 0)
      ωj/(rad•s−1 −5.347 9(5.347 9) −8.021 1(8.021 1)
      vj0n/(m•s−1 −19.598 4(−19.598 4) 0(0)
      vj0τ/(m•s−1 −12.246 4(12.246 4) 22.780 0(−22.780 0)
      ωj0/(rad•s−1 0(0) 0(0)
        注:括弧中的数值对应模型2.
      下载: 导出CSV

      表 2力学参数

      Table 2.Mechanical parameter

      μ k εn ετ
      −3.651 293 −0.736 506 −0.508 759 −0.892 757
      下载: 导出CSV

      表 3碰撞前车速误差的处理过程

      Table 3.Correction process of pre -crash speed

      模型 力学参数 算法 碰撞后车速 碰撞后车速误差 碰撞前车速 试验结果 碰撞前车速误差
      1 μ=−3.651 293
      k=−0.736 506


      ${ {{v} }_1} = \left[ {\begin{array}{*{20}{c} } { - 16.581\;3} \\ { - 2.284\;8} \\ { - 4.378\;7} \\ {17.790\;0} \\ { - 5.347\;9} \\ { - 8.021\;1} \end{array} } \right]$ $\begin{aligned}& { {{v} }_1} - { {{v} }_{11} } = \\& \left[ {\begin{array}{*{20}{c} } {1.470\;7} \\ {15.608\;0} \\ { - 2.830\;7} \\ { - 10.642\;2} \\ { - 9.633\;1} \\ { - 10.706\;6} \end{array} } \right]\end{aligned}$ ${ {{v} }_{01} } = \left[ {\begin{array}{*{20}{c} } { - 18.127\;7} \\ {3.361\;6} \\ { - 2.830\;7} \\ {12.137\;8} \\ { - 9.633\;1} \\ { - 10.706\;6} \end{array} } \right]$ $\begin{aligned}& { {{v} }_{01{\rm{T} } } } = \\& \left[ {\begin{array}{*{20}{c} } { - 19.598\;4} \\ { - 12.246\;4} \\ 0 \\ {22.780\;0} \\ 0 \\ 0 \end{array} } \right]\end{aligned}$ ${ {{v} }_{01} } - { {{v} }_{01{\rm{T} } } } = \left[ {\begin{array}{*{20}{c} } {1.470\;7} \\ {15.608\;0} \\ { - 2.830\;7} \\ { - 10.642\;2} \\ { - 9.633\;1} \\ { - 10.706\;6} \end{array} } \right]$

      ${ {{v} }_{11} } = \left[ {\begin{array}{*{20}{c} } { - 18.052\;0} \\ { - 17.892\;8} \\ { - 1.548\;0} \\ {28.432\;2} \\ {4.285\;2} \\ {2.685\;5} \end{array} } \right]$ ${ {{v} }_{011} } = \left[ {\begin{array}{*{20}{c} } { - 19.598\;4} \\ { - 12.246\;4} \\ 0 \\ {22.780\;0} \\ 0 \\ 0 \end{array} } \right]$ ${{{v}}_{011}} - {{{v}}_{01{\rm{T}}}} = \left[ {\begin{array}{*{20}{c}} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}} \right]$
      2 εn=
      −0.508 759
      ετ=
      −0.892 757


      ${ {{v} }_2} = \left[ {\begin{array}{*{20}{c} } { - 16.581\;3} \\ {2.284\;8} \\ { - 4.378\;7} \\ { - 17.790\;0} \\ {5.347\;9} \\ {8.021\;1} \end{array} } \right]$ $\begin{aligned}& { {{v} }_2} - { {{v} }_{21} } = \\& \left[ {\begin{array}{*{20}{c} } { - 1.619\;3} \\ { - 8.232\;5} \\ {0.262\;4} \\ {3.259\;1} \\ {4.840\;2} \\ {9.097\;7} \end{array} } \right]\end{aligned}$ ${ {{v} }_{02} } = \left[ {\begin{array}{*{20}{c} } { - 21.217\;7} \\ {4.013\;9} \\ {0.262\;4} \\ { - 19.520\;9} \\ {4.840\;2} \\ {9.097\;7} \end{array} } \right]$ $\begin{aligned}& { {{v} }_{02{\rm{T} } } } = \\& \left[ {\begin{array}{*{20}{c} } { - 19.598\;4} \\ {12.246\;4} \\ 0 \\ { - 22.780\;0} \\ 0 \\ 0 \end{array} } \right]\end{aligned}$ ${ {{v} }_{02} } - { {{v} }_{21{\rm{T} } } } = \left[ {\begin{array}{*{20}{c} } { - 1.619\;3} \\ { - 8.232\;5} \\ {0.262\;4} \\ {3.259\;1} \\ {4.840\;2} \\ {9.097\;7} \end{array} } \right]$


      1
      ${ {{v} }_{21} } = \left[ {\begin{array}{*{20}{c} } { - 14.962\;0} \\ {10.517\;3} \\ { - 4.641\;1} \\ { - 21.049\;1} \\ {0.507\;7} \\ { - 1.076\;6} \end{array} } \right]$ ${ {{v} }_{021} } = \left[ {\begin{array}{*{20}{c} } { - 19.598\;3} \\ {12.246\;4} \\ 0 \\ { - 22.780\;0} \\ {0.000\;1} \\ 0 \end{array} } \right]$ ${ {{v} }_{021} } - { {{v} }_{02{\rm{T} } } } = \left[ {\begin{array}{*{20}{c} } {0.000\;1} \\ 0 \\ 0 \\ 0 \\ 0.000\;1 \\ 0 \end{array} } \right]$
      εn1=
      −0.508 756
      ετ1=
      −0.892 759


      2
      ${ {{v} }_{21} } = \left[ {\begin{array}{*{20}{c} } { - 14.962\;0} \\ {10.517\;3} \\ { - 4.641\;1} \\ { - 21.049\;1} \\ {0.507\;7} \\ { - 1.076\;6} \end{array} } \right]$ ${ {{v} }_{022} } = \left[ {\begin{array}{*{20}{c} } { - 19.598\;4} \\ {12.246\;4} \\ 0 \\ { - 22.780\;0} \\ 0 \\ 0 \end{array} } \right]$ ${{{v}}_{022}} - {{{v}}_{02{\rm{T}}}} = \left[ {\begin{array}{*{20}{c}} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}} \right]$
      下载: 导出CSV

      表 4力学参数误差

      Table 4.Mechanical parameter error

      力学参数 原始值 准确值 相对误差/%
      μ −3.651 293 −3.651 293 0
      k −0.736 506 −0.736 506 0
      εn −0.508 759 −0.508 756 0.000 511
      ετ −0.892 757 −0.892 759 0.000 224
      下载: 导出CSV
    • 张健,张鑫. 基于撞痕重合的汽车碰撞事故分析方法[J]. 江南娱乐网页版入口官网下载安装学报,2008,43(5): 595-599.doi:10.3969/j.issn.0258-2724.2008.05.008

      ZHANG Jian, ZHANG Xin. Analyzing method for vehicle collision based on dent superposition[J]. Journal of Southwest Jiaotong University, 2008, 43(5): 595-599.doi:10.3969/j.issn.0258-2724.2008.05.008
      STEFFAN H. Accident reconstruction methods[J]. Vehicle System Dynamics, 2009, 47(8): 1049-1073.doi:10.1080/00423110903100440
      ZHANG Jian, LIANG Chao, YU Shengwu, et al. Consistency of calculation results of two typical vehicle collision models[C]//GITSS 2015. Beijing: [s.n.], 2016: 220-224
      黎光旭,阳兆祥,周文政. 交通事故中的车速鉴定方法——利用动量守恒计算车速[J]. 交通世界(运输车辆),2012,12: 90-91.
      张健,张鑫. 汽车二维碰撞模型的简便算法[J]. 北华大学学报(自然科学版),2011,12(1): 102-104.doi:10.3969/j.issn.1009-4822.2011.01.022

      ZHANG Jian, ZHANG Xin. A simple algorithm for two-dimensional vehicle collision models[J]. Journal of Beihua University (Natural Science), 2011, 12(1): 102-104.doi:10.3969/j.issn.1009-4822.2011.01.022
      张健,张鑫. 改进的汽车碰撞模型参数敏感性分析[J]. 江南娱乐网页版入口官网下载安装学报,2010,45(3): 451-456.doi:10.3969/j.issn.0258-2724.2010.03.023

      ZHANG Jian, ZHANG Xin. Parameter sensitivity analysis in improved vehicle collision models[J]. Journal of Southwest Jiaotong University, 2010, 45(3): 451-456.doi:10.3969/j.issn.0258-2724.2010.03.023
      张健,张鑫. 汽车碰撞模型中力学参数误差对碰撞前车速的影响[J]. 江南娱乐网页版入口官网下载安装学报,2011,46(2): 259-263.doi:10.3969/j.issn.0258-2724.2011.02.014

      ZHANG Jian, ZHANG Xin. Influence of mechanics parameter errors on pre-impact speed of vehicle in vehicle collision models[J]. Journal of Southwest Jiaotong University, 2011, 46(2): 259-263.doi:10.3969/j.issn.0258-2724.2011.02.014
      张健,张鑫,李江,等. 典型汽车碰撞模型自选参数的敏感性分析[J]. 汽车工程,2012,34(10): 905-908.doi:10.3969/j.issn.1000-680X.2012.10.008

      ZHANG Jian, ZHANG Xin, Li Jiang, et al. Sensitivity analysis of selected parameters in typical vehicle collision models[J]. Automotive Engineering, 2012, 34(10): 905-908.doi:10.3969/j.issn.1000-680X.2012.10.008
      张健,张鑫,高金贵,等. 转动惯量误差对汽车碰撞模型计算结果的影响[J]. 江南娱乐网页版入口官网下载安装学报,2015,50(1): 90-96.doi:10.3969/j.issn.0258-2724.2015.01.014

      ZHANG Jian, Zhang Xin, GAO Jingui, et al. Influence of rotational inertia errors on vehicle collision model result[J]. Journal of Southwest Jiaotong University, 2015, 50(1): 90-96.doi:10.3969/j.issn.0258-2724.2015.01.014
      LIU Chunke, SONG Xinping, WANG Jiao. Simulation analysis of car front collision based on LS-DYNA and Hyper Works[J]. Journal of Transportation Technologies, 2014, 4(4): 337-342.doi:10.4236/jtts.2014.44030
      PRENTKOVSKIS O, SOKOLOVSKIJ E, BARTULIS V. Investigating traffic accident:a collision of two motor vehicles[J]. Transport, 2010, 25(2): 105-115.doi:10.3846/transport.2010.14
      NEADES J, SMITH R. The determination of vehicle speeds from delta-V in two vehicle planar collisions[J]. Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering, 2011, 225(1): 43-53.doi:10.1243/09544070JAUTO1462
      李江. 交通事故力学[M]. 北京: 机械工业出版社, 2000: 119-128.
      许洪国. 汽车事故工程[M]. 3版. 北京: 人民交通出版社, 2014: 88-90.
      魏朗,陈荫三,石川,等. 车辆碰撞过程的试验分析研究[J]. 汽车工程,2000,22(4): 256-261.doi:10.3321/j.issn:1000-680X.2000.04.010

      WEI Lang, CHEN Yin san, ISHIKAWA, et al. An experiment research on the car-to-car collision[J]. Automotive Engineering, 2000, 22(4): 256-261.doi:10.3321/j.issn:1000-680X.2000.04.010
    • 加载中
    图(5)/ 表(4)
    计量
    • 文章访问数:653
    • HTML全文浏览量:335
    • PDF下载量:13
    • 被引次数:0
    出版历程
    • 收稿日期:2017-07-22
    • 修回日期:2018-10-17
    • 网络出版日期:2019-09-04
    • 刊出日期:2019-10-01

    目录

      /

        返回文章
        返回
          Baidu
          map