Mathematical Description and Analysis on Characteristics of Pore Structure for Foam Concrete
-
摘要:为分析泡沫混凝土孔结构表征参数之间的关系和气孔结构特点,建立了紧密堆积模型和非紧密堆积模型,基于不同的理论模型推导了孔结构主要参数包括孔隙率、气孔内表面积、气孔壁厚度的计算公式,分析各参数之间的关系;通过实测泡沫混凝土的孔结构参数,验证了计算公式的可行性,并将计算公式应用于泡沫混凝土孔结构特征分析. 研究结果表明:当容重等级小于1 000 kg/m 3时,泡沫混凝土形成的气孔结构为紧密堆积型结构,气孔壁厚计算结果与统计结果偏差在12%以内,验证了紧密堆积型结构计算公式的可行性;当容重等级大于或等于1 000 kg/m 3时,泡沫混凝土形成的气孔结构为非紧密堆积型结构,气孔壁厚计算结果与统计结果偏差在3%以内,验证了非紧密堆积型结构计算公式的可行性;在相同容重下,气孔壁厚度随气孔直径的增大而增大,随孔隙率的增大而减小;1 m 3泡沫混凝土的气孔内表面积可达到3 000 m 2以上,气孔壁厚可低至60 μm以下,泡沫混凝土具有多孔薄壁、小体积物料与大体积的气孔空气共存于一体、小体积物料以巨大的面积暴露在气孔的气体之中的结构特征.Abstract:To analyse the characteristics of the pore structure of foam concrete and reveal the relationships between various pore structure parameters, dense and non-dense packing structure models were established. A formula for the calculation of pore structure parameters, including porosity, surface area, and pore wall thickness, was derived based on various theoretical models to analyse the relationships between these parameters. The formula was validated using the measured pore structure parameters and used to analyse the characteristics of the pore structure of foam concrete. The results show that the foam concrete has a dense packing structure when the dry density grade is less than 1 000 kg/m 3. The difference in the pore wall thickness according to the experimental data and that obtained via the dense packing structure model is less than 12%, which illustrates that the dense packing structure model is feasible. When the dry density grade was egual or greater than 1 000 kg/m 3foam concrete has a non-dense packing structure. The difference in the pore wall thickness according to experimental data and that obtained via the dense packing structure model is less than 3%, which verifies the feasibility of the non-dense packing structure model. Pore wall thickness increased with increasing pore diame- ter, and decreased with increasing porosity for the same bulk density. The pore surface area can be over 3 000 m 2per m 3of foam concrete and the pore wall thickness can be as small as 60 μm. Foam concrete is characterized by a porous structure with thin walls, the coexistence of materials with small volumes and pores with large volumes, and the exposure of materials with small volumes to the gas in pores with a large areas.
-
表 1统计的气孔结构参数
Table 1.Pore structure parameters by statistics
孔隙率/% 一级气孔平均孔径/mm 气孔壁厚/μm 71.3 0.91 65.7 70.6 0.41 30.6 表 2泡沫混凝土的紧密堆积型气孔结构参数
Table 2.Pore structure parameters of foam concrete in dense packing structures
容重
/(kg•m–3)统计结果 计算气孔壁厚/μm 计算与统计
壁厚的偏差
比率/%一级气孔平均孔径/mm 总孔隙率/% 统计气孔壁厚度/μm 930 0.99 49.76 153.38 146.61 –4.43 830 0.93 55.42 124.31 117.82 –5.23 730 0.87 59.78 105.56 96.79 –8.33 630 0.79 64.31 84.11 76.02 –9.63 530 0.84 72.10 69.23 61.01 –11.85 表 3泡沫混凝土的非紧密堆积型气孔结构参数
Table 3.Pore structure parameters of foam concrete in non-dense packing structures
容重
/(kg•m–3)统计结果 计算气
孔壁厚
/μm计算与统计
结果的偏差
比率/%平均气
孔孔径
/mm孔隙率/% 统计气
孔壁厚
/μm1 330 0.62 30.43 379.22 376.58 –0.69 1 230 0.63 35.78 306.38 303.12 –1.08 1 130 0.61 41.29 233.71 231.22 –1.07 1 030 0.64 46.12 200.49 195.38 –2.54 表 4紧密堆积型的一级气孔结构参数计算结果
Table 4.The calculated parameters of first stage pore structure using dense packing structure model
容重/
(kg•m–3)总孔隙率/% 一级气孔结构参数计算 孔隙率/% 气孔数/ × 109 气孔内表
面积/m2气孔壁厚度/μm 830 56.32 52.21 1.00 3 132 123.61 630 66.84 57.47 1.10 3 448 88.19 430 77.37 62.73 1.20 3 764 56.82 表 5非紧密堆积型的气孔结构参数计算结果
Table 5.Calculated parameters of bubble pore structure using non-dense packing structure model
容重/
(kg•m–3)总孔隙率/% 气孔数/
× 109气孔内表
面积 /m2气孔壁厚度 /μm 1 430 24.71 0.47 1 484 781.87 1 230 35.27 0.67 2 116 492.42 1 030 45.82 0.87 2 747 309.69 -
闫振甲, 何燕君. 泡沫混凝土实用生产技术[M]. 北京: 化学工业出版社, 2006: 8-12 NAMBIAR E K, RAMAMURTHY K. Air-void characterisation of foam concrete[J]. Cem. Concr. Res., 2007, 37(2): 221-230 方永浩,王锐,庞二波,等. 水泥-粉煤灰泡沫混凝土抗压强度与气孔结构的关系[J]. 硅酸盐学报,2010,38(4): 621-626FANG Yonghao, WANG Rui, PANG Erbo, et al. Relationship between compressive strength and air-void structure of foamed cement-fly ash concrete[J]. Journal of the Chinese Ceramic Society, 2010, 38(4): 621-626 KEARSLEY E, WAINWRIGHT P J. The effect of porosity on the strength of foamed concrete[J]. Cem. and Concr. Res., 2002, 32(2): 233-239 周顺鄂,卢忠远,焦雷,等. 泡沫混凝土压缩特性及抗压强度模型[J]. 武汉理工大学学报,2010,32(11): 9-13ZHOU Shun’e, LU Zhongyuan, JIAO Lei, et al. Compression property and compression strength model of foamed concrete[J]. Journal of Wuhan University of Technology, 2010, 32(11): 9-13 RAMAMURTHY K, KUNHANANDAN N, RANJANI G S. A classification of studies on properties of foam concrete[J]. Cement and Concrete Composites, 2009, 31(6): 388-396 彭军芝,彭小芹,桂苗苗,等. 蒸压加气混凝土孔结构表征的图像分析方法[J]. 材料导报,2011,25(1): 125-129PENG Junzhi, PENG Xiaoqin, GUI Miaomiao, et al. Pore structure characterization of autoclaved aerated concrete using image analysis method[J]. Materials Review, 2011, 25(1): 125-129 陈贤瑞,卢都友,孙亚峰,等. 图像分析法表征泡沫地质聚合物宏观孔结构[J]. 材料导报,2015,29(6): 113-117CHEN Xianrui, LU Duyou, SUN Yafeng, et al. Characterization of macro pore structure of foam geopolymers by image analysis technology[J]. Materials Review, 2015, 29(6): 113-117 庞超明,王少华. 泡沫混凝土孔结构的表征及其对性能的影响[J]. 建筑材料学报,2017,20(1): 93-98PANG Chaoming, WANG Shaohua. Void characterization and effect on properties of foam concrete[J]. Journal of Building Meterials, 2017, 20(1): 93-98 高立. 泡沫混凝土孔结构的调控与评价[D]. 武汉: 武汉理工大学, 2012 罗云峰. 泡沫混凝土及其应用于制备复合夹芯墙板的研究[D]. 广州: 华南理工大学, 2016 张志杰. 材料物理化学[M]. 北京: 化学工业出版社, 2006: 5-8 余永宁, 刘国权. 体视学: 组织定量分析的原理和应用[M]. 北京: 冶金工业出版社, 1989: 35-75 -



下载:



