• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

高速铁路初始晚点致因-影响列车数分布模型

文超,李忠灿,黄平,汤轶雄,蒋朝哲,高磊

downloadPDF
文超, 李忠灿, 黄平, 汤轶雄, 蒋朝哲, 高磊. 高速铁路初始晚点致因-影响列车数分布模型[J]. 江南娱乐网页版入口官网下载安装学报, 2018, 53(6): 1261-1269. doi: 10.3969/j.issn.0258-2724.2018.06.023
引用本文: 文超, 李忠灿, 黄平, 汤轶雄, 蒋朝哲, 高磊. 高速铁路初始晚点致因-影响列车数分布模型[J]. 江南娱乐网页版入口官网下载安装学报, 2018, 53(6): 1261-1269.doi:10.3969/j.issn.0258-2724.2018.06.023
WEN Chao, LI Zhongcan, HUANG Ping, TANG Yixiong, JIANG Chaozhe, GAO Lei. Cause-based Distribution Models of Affected Trains Account for Primary Delay in High-Speed Rail[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1261-1269. doi: 10.3969/j.issn.0258-2724.2018.06.023
Citation: WEN Chao, LI Zhongcan, HUANG Ping, TANG Yixiong, JIANG Chaozhe, GAO Lei. Cause-based Distribution Models of Affected Trains Account for Primary Delay in High-Speed Rail[J].Journal of Southwest Jiaotong University, 2018, 53(6): 1261-1269.doi:10.3969/j.issn.0258-2724.2018.06.023

高速铁路初始晚点致因-影响列车数分布模型

doi:10.3969/j.issn.0258-2724.2018.06.023
详细信息
    作者简介:

    文超(1984—),男,副教授,博士,研究方向为铁路运输组织优化, E-mail:wenchao@swjtu.edu.cn

    通讯作者:

    蒋朝哲(1968—),男,副教授,博士,研究方向为智能铁路运输系统,E-mail:jiangchaozhe@swjtu.edu.cn

  • 中图分类号:U292.2

Cause-based Distribution Models of Affected Trains Account for Primary Delay in High-Speed Rail

    • 摘要:为了研究高速铁路列车晚点严重程度,基于统计建模方法建立了高速铁路列车初始晚点不同致因情况下影响列车数的分布模型. 首先基于中国铁路广州局集团有限公司的高速铁路列车运行实绩,以2014年至2015年高速列车初始晚点影响列车数为建模数据,比选了5类备选模型对初始晚点影响列车数分布曲线的拟合优度;其次运用R语言估计了模型参数并建立了初始晚点致因-影响列车数分布的逆模型;最后对模型可行性进行了卡方检验,并运用2016年高速列车运行实绩数据进行Kolmogorov-Smirnov双样本检验. 研究结果表明:每类致因的逆模型精度都能够通过0.05的显著性水平检验,所建立的分布模型与校验数据是同分布,模型预测结果对初始晚点原因的实际影响列车数匹配度在97%以上.

    • 图 1初始晚点影响列车数分布

      Figure 1.Distributions of affected trains owing to primary delay

      图 2初始晚点致因-影响列车数分布拟合

      Figure 2.Fit curves of affected trains distributions owing to different causes

      图 3初始晚点致因-影响列车数累积概率分布

      Figure 3.Cumulative probability of cause-based influenced trains

      图 4模型预测结果与实际数据的匹配度

      Figure 4.Matching degree between prediction results and observations

      表 1不同模型拟合优度

      Table 1.The fitness of different models

      晚点
      致因
      线性
      模型
      对数
      模型
      逆模型 二次
      模型
      三次
      模型
      TD 0.246 0.616 0.996 0.482 0.657
      FRS 0.402 0.749 0.986 0.676 0.845
      FC 0.501 0.786 0.971 0.784 0.892
      FT 0.513 0.813 0.967 0.800 0.898
      FPSC 0.458 0.811 0.912 0.744 0.878
      FW 0.380 0.758 0.866 0.658 0.801
      FFM 0.457 0.803 0.946 0.755 0.855
      FO 0.281 0.591 0.935 0.504 0.661
      下载: 导出CSV

      表 2逆模型参数系数及检验

      Table 2.Coefficients and test results of the inverse model

      晚点
      致因
      ${\beta _1}$ ${\beta _2}$
      TD 0.310 6 –0.007 3
      FRS 0.350 0 –0.013 4
      FC 0.515 8 –0.049 3
      FT 0.369 2 –0.015 9
      FPSC 0.250 7 –0.001 4
      FW 0.183 6 0.001 8
      FFM 0.252 0 –0.000 9
      FO 0.370 8 –0.016 2
      下载: 导出CSV

      表 3初始晚点致因-影响列车数解释程度

      Table 3.Explanation degree of each model of cause-affected trains

      晚点致因 i Ki Zi Si Ei/%
      TD 1 24 1 249 1 193 95.5
      FRS 2 24 259 257 99.2
      FC 3 7 197 189 95.9
      FT 4 17 84 84 100.0
      FPSC 5 36 217 216 99.5
      FW 6 67 201 201 100.0
      FFM 7 32 156 155 99.3
      FO 8 17 135 122 90.4
      下载: 导出CSV

      表 4卡方检验结果

      Table 4.Chi-square test results

      晚点致因 p 是否通过检验
      TD 0.255 9
      FRS 0.297 4
      FC 0.227 0
      FT 0.307 6
      FPSC 0.321 2
      FW 0.385 1
      FFM 0.329 2
      FO 0.288 2
      下载: 导出CSV

      表 5K-S检验结果

      Table 5.K-S test results

      晚点致因 建模样本量 检验样本量 p
      TD 1 249 904 0.279
      FRS 259 198 0.155
      FC 197 119 0.059
      FT 84 55 0.172
      FPSC 217 315 0.084
      FW 201 43 0.001
      FFM 156 116 0.569
      FO 135 63 0.000
      下载: 导出CSV
    • 彭其渊,李建光,杨宇翔,等. 高速铁路建设对我国铁路运输的影响[J]. 江南娱乐网页版入口官网下载安装学报,2016,51(3): 525-533

      PENG Qiyuan, LI Jianguang, YANG Yuxiang, et al.Influences of high-speed railway construction on railway transportation of China[J]. Journal of Southwest Jiaotong University, 2016, 51(3): 525-533
      YUAN J, GOVERDE R M P, HANSEN J A. Evaluating stochastic train process time distribution models on the basis of empirical detection data[J]. Comprail, 2006, 88: 631-640
      孙焰,刘胤宏,李致中,等. 列车运行图的晚点概率分析[J]. 长沙铁道学院学报,1998(4): 83-89

      SUN Yan, LIU Yinhong, LI Zhizhong, et al. The analysus of delying time probablity for the travelling graph of trains[J]. Journal of Changsha Railway University, 1998(4): 83-89
      CUI Y, MARTIN U, ZHAO W. Calibration of disturbance parameters in railway operational simulation based on reinforcement learning[J]. Journal of Rail Transport Planning & Management, 2016, 6(1): 1-12
      NILS O E O, HANS H. Influencing factors on train punctuality results from some Norwegian studies[J]. Transport Policy, 2004, 11(4): 387-397
      MICHIEL V. Reliability of Railway Systems[D]. Rotterdam: Erasmus University Rotterdam. 2005
      BRIGGS K, BECK C. Modelling train delays with q-exponential functions[J]. Physica A:Statistical Mechanics and its Applications, 2007, 378(2): 498-504
      KRÜGER N, VIERTH I, FAKHRAEI R F. Spatial, temporal and size distribution of freight train delays: evidence from Sweden[R]. Stockholm, Sweden: CTS-Centre for Transport Studies Stockholm (KTH and VTI), 2013
      WALLANDER J, MAKITALO M. Data mining in rail transport delay chain analysis[J]. International Journal of Shipping and Transport Logistics, 2012, 4(3): 269-285
      李兰波. 提高旅客列车正点率的理性认识[J]. 中国铁路,2002(3): 26-28

      LI Lanbo. Rational knowledge of boosting the punctuality of passenger trains[J]. Chinese Railways, 2002(3): 26-28
      刘岩,郭竞文,罗常津,等. 列车运行实绩大数据分析及应用前景展望[J]. 中国铁路,2015(6): 70-73

      LIU Yan, GUO Jingwen, LUO Changjin, et al. Big data analyzing and application prospect expectation of train operation records[J]. Chinese Railways, 2015(6): 70-73
      彭其渊,朱松年,闫海峰. 列车运行图可调整度评价系统研究[J]. 江南娱乐网页版入口官网下载安装学报,1998,33(4): 367-371

      PENG Qiyuan, ZHU Songnian, YAN Haifeng. A system for evaluation of train diagram elasticity[J]. Journal of Southwest Jiaotong University, 1998, 33(4): 367-371
      XU Peijuan, CORMAN F, PENG Qiyuan. Analyzing railway disruptions and their impact on delayed traffic in Chinese high-speed railway[J]. IFAC Papers On Line, 2016, 49(3): 84-89
      庄河,文超,李忠灿,等. 基于高速列车运行实绩的致因-初始晚点时长分布模型[J]. 铁道学报,2017,39(9): 25-31

      ZHUANG He, WEN Chao, LI Zhongcan, et al. Cause based primary delay distribution models of high-speed trains on account of operation records[J]. Journal of the China Railway Society, 2017, 39(9): 25-31
      WEN Chao, LI Zhongcan, LESSAN J, et al. Statistical investigation on train primary delay based on real records:evidence from Wuhan–Guangzhou HSR[J]. International Journal of Rail Transportation, 2017, 5(5): 170-189
      张文彤, 闫洁. SPSS 统计分析基础教程[M]. 2版. 北京: 高等教育出版社, 2011: 366-370
    • 加载中
    图(4)/ 表(5)
    计量
    • 文章访问数:524
    • HTML全文浏览量:380
    • PDF下载量:30
    • 被引次数:0
    出版历程
    • 收稿日期:2017-02-17
    • 刊出日期:2018-12-01

    目录

      /

        返回文章
        返回
          Baidu
          map