• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

外骨骼助力负重中下肢肌肉收缩与协作机制

李怀仙,程文明,刘放,张铭奎,杨春梅

downloadPDF
李怀仙, 程文明, 刘放, 张铭奎, 杨春梅. 外骨骼助力负重中下肢肌肉收缩与协作机制[J]. 江南娱乐网页版入口官网下载安装学报, 2018, 53(6): 1286-1294. doi: 10.3969/j.issn.0258-2724.2018.06.026
引用本文: 李怀仙, 程文明, 刘放, 张铭奎, 杨春梅. 外骨骼助力负重中下肢肌肉收缩与协作机制[J]. 江南娱乐网页版入口官网下载安装学报, 2018, 53(6): 1286-1294.doi:10.3969/j.issn.0258-2724.2018.06.026
LI Huaixian, CHENG Wenming, LIU Fang, ZHANG Mingkui, YANG Chunmei. Lower Limb Muscle Co-Contraction and Coupling Synergy in Exoskeleton Assistance for Load Carriage Walking[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1286-1294. doi: 10.3969/j.issn.0258-2724.2018.06.026
Citation: LI Huaixian, CHENG Wenming, LIU Fang, ZHANG Mingkui, YANG Chunmei. Lower Limb Muscle Co-Contraction and Coupling Synergy in Exoskeleton Assistance for Load Carriage Walking[J].Journal of Southwest Jiaotong University, 2018, 53(6): 1286-1294.doi:10.3969/j.issn.0258-2724.2018.06.026

外骨骼助力负重中下肢肌肉收缩与协作机制

doi:10.3969/j.issn.0258-2724.2018.06.026
详细信息
    作者简介:

    李怀仙(1980—),女,讲师,博士研究生. 研究方向为人机工程、外骨骼机器人,E-mail: ynlihuaixian@163.com

    通讯作者:

    程文明(1963—),男,教授,博士. 研究方向为起重机、工业工程、机器人,E-mail:wmcheng@home.swjtu.edu.cn

  • 中图分类号:TB18

Lower Limb Muscle Co-Contraction and Coupling Synergy in Exoskeleton Assistance for Load Carriage Walking

    • 摘要:为了评估助力外骨骼人机交互性能,探索更优的外骨骼人机结构和人机协调控制策略,通过实验评估了9名健康男性在常规负重和外骨骼助力负重行走中,下肢肌肉平均活动、肌肉成对收缩指标和肌肉整体协调机制的特征与变化. 实验结果表明:外骨骼助力增加了肌肉平均活动,尤其是踝关节跖屈肌腓骨长肌,显示了当前外骨骼在踝关节/脚部位的人机界面设计存在缺陷;降低了成对肌肉的平均收缩指标,增大了肌肉收缩范围;肌肉模块化协作复杂度相似,解释方差水平值分别为95%和96%,但常规负重下的模块仅能描述外骨骼助力时83%~91%的肌电变量,这表明人体在外骨骼助力下不会单一地依赖中心控制和模块控制来协调肌肉活动,而是采取灵活且有规律的神经肌肉调节机制;肌间协作权重和肌肉激活尺度系数呈完全不同的形态,采取了与常规步态下完全不同的控制策略;进一步设计踝关节/脚人机交互界面,参考助力下神经肌肉调节机制规律来设计人机交互策略,将提高外骨骼人机可用性和人机交互性能.

    • 图 1辅助负重外骨骼实验样机SWJTU-EXO Ⅲ

      Figure 1.Load carriage exoskeleton prototype SWJTU-EXO Ⅲ

      图 2实验顺序和负重量级拉丁方顺序

      Figure 2.Test processes and Latin Square sequences of load carriage levels

      图 3下肢肌电信号采集的名称和位置

      Figure 3.Names and positions of the lower muscles for the sEMG signal collection

      图 4下肢肌电信号非负矩阵的分解与重建图示

      Figure 4.Illustration of non-negative matrix factorization and reconstruction of the EMG data from the lower limb muscles

      图 5外骨骼助力负重和自然人负重下下肢肌肉活动平均值比较

      Figure 5.Comparative mean muscle activities between assistive load carriage using the exoskeleton prototype and conventional load carriage using a backpack

      图 6成对肌肉协同收缩指标

      Figure 6.Co-contraction index between the agonist and antagonist of flex/flexion movement

      图 7有无外骨骼助力下3模块下肢肌肉群协作模式的总体解释方差比较

      Figure 7.Total variance comparison about three modules of the measured lower muscles coordination between without EXO and the with EXO load carriage conditions

      图 8采用3个模块分析的肌肉权重和肌肉激活系数

      Figure 8.Synergy weights and muscle activation using 3 modules in the muscle coordination factorization

    • KIGUCHI K, HAYASHI Y. An EMG-based control for an upper-limb power-assist exoskeleton robot[J]. IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics, 2012, 42(4): 1064-1071
      FARRIS, R J, QUINTERO, H A, GOLDFARB M. Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19(6): 652-659doi:10.1109/TNSRE.2011.2163083
      RESTREPO-ZAPATA J, GALLEGO-DUQUE C, MARQUEZ-VILORIA D, et al. Two-degree adjustable exoskeleton for assistance of the human arm using a mechanical system of fast assembly and upgradability[J]. International Journal on Smart Sensing & Intelligent Systems, 2017, 10(3): 491-505
      KAWAMOTO H, SANKAI Y. Power assist method based on Phase Sequence and muscle force condition for HAL[J]. Advanced Robotics, 2005, 19(7): 717-734doi:10.1163/1568553054455103
      KAZEROONI H, STEGER R, HUANG L. Hybrid control of the berkeley lower extremity exoskeleton (BLEEX)[J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(2): 128-138doi:10.1109/TMECH.2006.871087
      RASHEDI E, KIM S, NUSSBAUM M A, et al. Ergonomic evaluation of a wearable assistive device for overhead work[J]. Ergonomics, 2014, 57(12): 1864-1874doi:10.1080/00140139.2014.952682
      STEELE K M, JACKSON R W, SHUMAN B R, et al. Muscle recruitment and coordination with an ankle exoskeleton[J]. Journal of Biomechanics, 2017, 59: 50-58doi:10.1016/j.jbiomech.2017.05.010
      FLEISCHER C, HOMMEL G. A human-exoskeleton interface utilizing electromyography[J]. IEEE Transactions on Robotics, 2008, 24(4): 872-882doi:10.1109/TRO.2008.926860
      RANGANATHAN R, KRISHNAN C, DHAHER Y Y, et al. Learning new gait patterns:exploratory muscle activity during motor learning is not predicted by motor modules[J]. Journal of Biomechanics, 2016, 49(5): 718-725doi:10.1016/j.jbiomech.2016.02.006
      GRAZI L, CREA S, PARRI A, et al. Gastrocnemius myoelectric control of a robotic hip exoskeleton can reduce the user’s lower-limb muscle activities at push off[J]. Frontiers in Neuroscience, 2018, 12: 1-11doi:10.3389/fnins.2018.00001
      SYLOS-LABINI F, LA S V, D’AVELLA A, et al. EMG patterns during assisted walking in the exoskeleton[J]. Frontiers in Human Neuroscience, 2014, 8: 423
      YIN Y H, FAN Y J, XU L D. EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton[J]. IEEE Transactions on Information Technology in Biomedicine, 2012, 16(4): 542-549doi:10.1109/TITB.2011.2178034
      IVANENKO Y P, POPPELE R E, LACQUANITI F. Motor control programs and walking[J]. Neuroscientist, 2006, 12(4): 339-348doi:10.1177/1073858406287987
      KAWAMOTO H, TAAL S, NINISS H, et al. Voluntary motion support control of Robot Suit HAL triggered by bioelectrical signal for hemiplegia[C]//Annual International Conference of the Ieee Engineering in Medicine and Biology Society. Chicago: IEEE, 2010: 462-466
      PETERSON M D, RHEA M R, SEN A, et al. Resistance exercise for muscular strength in older adults:a meta-analysis[J]. Ageing Research Reviews, 2010, 9(3): 226-237doi:10.1016/j.arr.2010.03.004
      CAPPELLINI G, IVANENKO Y P, POPPELE R E, et al. Motor patterns in human walking and running[J]. Journal of Neurophysiology, 2006, 95(6): 3426-3437doi:10.1152/jn.00081.2006
      刘放,程文明,邬钱涌. 基于缓冲结构设计的携行式外骨骼研究[J]. 机械设计与研究,2012,28(5): 37-40doi:10.3969/j.issn.1006-2343.2012.05.010

      LIU Fang, CHENG Wenming, WU Qianyong. Research of portable exoskeleton based on buffer design[J]. Machine Design and Research, 2012, 28(5): 37-40doi:10.3969/j.issn.1006-2343.2012.05.010
      CLARK D J, TING L H, ZAJAC F E, et al. Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke[J]. Journal of Neurophysiology, 2010, 103(2): 844-857doi:10.1152/jn.00825.2009
      LUNDBERG H J, ROJAS I L, FOUCHER K C, et al. Comparison of antagonist muscle activity during walking between total knee replacement and control subjects using unnormalized electromyography[J]. Journal of Arthroplasty, 2015, 31(6): 1331-1339
      HURD W J, SNYDERMACKLER L. Knee instability after acute ACL rupture affects movement patterns during the mid-stance phase of gait[J]. Journal of Orthopaedic Research, 2007, 25(10): 1369-1377doi:10.1002/jor.v25:10
      SOUISSI H, ZORY R, BREDIN J, et al. Comparison of methodologies to assess muscle co-contraction during gait[J]. Journal of Biomechanics, 2017, 57: 141-145doi:10.1016/j.jbiomech.2017.03.029
      HEIDEN T L, LLOYD D G, ACKLAND T R. Knee joint kinematics,kinetics and muscle co-contraction in knee osteoarthritis patient gait[J]. Clinical Biomechanics, 2009, 24(10): 833-841doi:10.1016/j.clinbiomech.2009.08.005
      SAITO A, TOMITA A, ANDO R, et al. Muscle synergies are consistent across level and uphill treadmill running[J]. Scientific Reports, 2018, 8(1): 5979
      谢平,李欣欣,杨春华,等. 基于表面肌电非负矩阵分解与一致性的肌间协同-耦合关系研究[J]. 中国生物医学工程学报,2017,36(2): 150-157doi:10.3969/j.issn.0258-8021.2017.02.004

      XIE Ping, LI Xinxin, YANG Chunhua. Research on the intermuscular synergy and coupling analysis based on surface EMG on negative matrix factorization-coherence[J]. Chinese Journal of Biomedical Engineering Machine Design and Research, 2017, 36(2): 150-157doi:10.3969/j.issn.0258-8021.2017.02.004
      CHVATAL S A, TING L H. Common muscle synergies for balance and walking[J]. Frontiers in Computational Neuroscience, 2013, 7(5): 48
      SAWERS A, ALLEN J L, TING L H. Long-term training modifies the modular structure and organization of walking balance control[J]. Journal of Neurophysiology, 2015, 114(6): 3359-3373doi:10.1152/jn.00758.2015
      KOLLER J R, JACOBS D A, FERRIS D P, et al. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton[J]. Journal of Neuroengineering & Rehabilitation, 2015, 12(1): 1-14
      YOUNG A J, FOSS J, GANNON H, et al. Influence of power delivery timing on the energetics and biomechanics of humans wearing a hip exoskeleton[J]. Frontiers in Bioengineering & Biotechnology, 2017, 5: 1-11
    • 加载中
    图(8)
    计量
    • 文章访问数:517
    • HTML全文浏览量:257
    • PDF下载量:34
    • 被引次数:0
    出版历程
    • 收稿日期:2018-06-11
    • 刊出日期:2018-12-01

    目录

      /

        返回文章
        返回
          Baidu
          map