• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

硬岩掘进机液压阀块设计方法

张怀亮,赵丽娜,周井行

downloadPDF
张怀亮, 赵丽娜, 周井行. 硬岩掘进机液压阀块设计方法[J]. 江南娱乐网页版入口官网下载安装学报, 2020, 55(1): 52-59. doi: 10.3969/j.issn.0258-2724.20180072
引用本文: 张怀亮, 赵丽娜, 周井行. 硬岩掘进机液压阀块设计方法[J]. 江南娱乐网页版入口官网下载安装学报, 2020, 55(1): 52-59.doi:10.3969/j.issn.0258-2724.20180072
ZHANG Huailiang, ZHAO Lina, ZHOU Jingxing. Design Method of Hydraulic Valve Block for Tunnel Boring Machine[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 52-59. doi: 10.3969/j.issn.0258-2724.20180072
Citation: ZHANG Huailiang, ZHAO Lina, ZHOU Jingxing. Design Method of Hydraulic Valve Block for Tunnel Boring Machine[J].Journal of Southwest Jiaotong University, 2020, 55(1): 52-59.doi:10.3969/j.issn.0258-2724.20180072

硬岩掘进机液压阀块设计方法

doi:10.3969/j.issn.0258-2724.20180072
基金项目:国家重点基础研究发展计划(2013CB035400)
详细信息
    作者简介:

    张怀亮(1964—),男,教授,博士,研究方向为液压系统动力学,E-mail:zhl2001@csu.edu.cn

  • 中图分类号:TH137

Design Method of Hydraulic Valve Block for Tunnel Boring Machine

    Funds:The National Basic Research Program of China (973 Program)
    • 摘要:为了改善基础振动下液压阀块流道流通品质,基于有限元原理建立了基础振动下流道的仿真模型并验证了仿真模型的正确性;分析了基础振动下不同流道的布局方式,工艺孔结构参数,进出口流道长度对流道压降特性的影响;提出了基础振动下液压阀块的设计流程. 研究结果表明:基础振动下U型流道压降特性最好,Z型流道最差;U型流道工艺孔长度越短,流道压降平均值和压降波动越小;Z型流道工艺孔长度为3.5倍工艺孔直径,V型流道的工艺孔长度为3倍工艺孔直径时,流道压降平均值和压降波动较小;工艺孔直径略大于进出口流道直径时,有利于减小基础振动的影响;出口流道的长度在3倍出口流道直径以上时,有利于避免流道出口处于转弯后流场的恢复区. 新的设计方法能够有效减小阀块内流体压降大小,提高压力稳定性.

    • 图 1典型流道

      Figure 1.Typical flow channels

      图 2流道的网格划分

      Figure 2.Mesh of flow channels

      图 3不同布局方式下的压降特性

      Figure 3.Pressure drop characteristics under the different layout ways

      图 4压降特性曲线与工艺孔长度的关系

      Figure 4.Relationship between pressure drop characteristics and the length of fabrication hole

      图 5压降特性曲线与工艺孔直径的关系

      Figure 5.Relationship between pressure drop characteristics and the diameter of fabrication hole

      图 6压降特性曲线与工艺孔冗余腔长度的关系

      Figure 6.Relationship between pressure drop characteristics and the redundancy cavity length of fabrication hole

      图 7不同出口长度处的速度云图

      Figure 7.Velocity contour at different length of export

      图 8试验系统

      Figure 8.Experimental system

      图 9无基础振动下流道流量-压降曲线

      Figure 9.Flow-pressure drop curve of U-shaped and Z-shaped channel without foundation vibration

      图 10基础振动下压降波动幅值

      Figure 10.Fluctuation amplitude of pressure drop under foundation vibration

      图 11基础振动下阀块的设计流程

      Figure 11.Design flow of valve block under the foundation vibration

      图 12液压推进系统原理

      Figure 12.Schematic diagram of thrust hydraulic system

      图 13油路布局

      Figure 13.Flow channel layout

      图 14阀块设计

      Figure 14.Design of valve block

      表 1流体介质参数

      Table 1.Parameters of fluid

      介质类型 密度/(kg•m– 3 动力粘度/(kg•(m•s)−1 热传导系数/(W•(m•k)−1 比热容/(J•(kg•k)−1
      46号液压油 870 0.039 15 0.12 1 700
      下载: 导出CSV

      表 2液压元件类型

      Table 2.Types of hydraulic element

      标号 名称 型号
      3 比例调速阀 RPCED1-25/T3
      4 二位二通换向阀 DS3-TA23/10N
      5 比例溢流阀 RPCED10-350/10N-D24K1
      6 三位四通换向阀 DS3-S3/10N-D24K1
      下载: 导出CSV
    • LI X H, YU H B, YUAN M Z, et al. Study on the linear dynamic model of shield TBM cutterhead driving system[C]//IECON 2011: the 37th Annual Conference of the IEEE Industrial Electronics Society. [S.l.]: IEEE, 2011: 3864-3871.
      KOYAMA Y. Present status and technology of shield tunneling method in Japan[J]. Tunneling and Underground Space Technology, 2003, 18(2): 145-159.
      ZHANG K, YU H, LIU Z, et al. Dynamic characteristic analysis of TBM tunnelling in mixed-face conditions[J]. Simulation Modeling Practice and Theory, 2010, 18(7): 1019-1031.doi:10.1016/j.simpat.2010.03.005
      陈炳瑞,冯夏庭,曾雄辉,等. 深埋隧洞TBM 掘进微震实时监测与特征分析[J]. 岩石力学与工程学报,2011,30(2): 275-283.

      CHEN Bingrui, FENG Xiating, ZENG xionghui, et al. Deep buried tunnel TBM tunneling microseismic monitoring and real-time characteristics analysis[J]. Journal of Rock Mechanics and Engineering, 2011, 30(2): 275-283.
      IBERALL A S. Attenuation of oscillatory pressures in instrument lines[J]. Journal of Research, National Bureau of Standards, 1950, 45(5): 85-108.
      BROWN F T. The transient response of fluid lines[J]. Journal of Fluids Engineering, 1962, 84(4): 547-553.
      TAYLOR A M, WHITE LAW J H. Curved ducts with strong secondary motion-velocity measurements of developing laminar and turbulent flow[J]. Journal of Fluids Engineering, 1982, 104(15): 350-359.
      万会雄,黄辉,黄海波. 超长液压管道压力损失的计算与试验分析[J]. 液压与气动,2009,86(10): 23-25.doi:10.3969/j.issn.1000-4858.2009.10.008

      WAN Huixiong, HUANG Hui, HUANG Haibo. Super long hydraulic pipe pressure loss calculation and experimental analysis[J]. Journal of Hydraulic and Pneumatic, 2009, 86(10): 23-25.doi:10.3969/j.issn.1000-4858.2009.10.008
      侯占勇. 混凝土泵泵送系统阀块流道的压力损失研究及优化[D]. 长沙: 中南大学, 2013.
      贺尚红,谭文成,何志勇. 复杂液压管网压力脉动特性建模与仿真[J]. 液压与气动,2012,62(9): 156-162.

      HE Shanghong, TAN Wencheng, HE Zhiyong. The modeling and simulation of complex hydraulic pipe network pressure pulsation characteristics[J]. Journal of Hydraulic and Pneumatic, 2012, 62(9): 156-162.
      CHAMBON R, CHEVALIER P M, DESCOTTE Y. An expert system for object placing in 3D space[J]. Computer Aided Engineering Journal, 1988(21): 51-59.
      CHAMBON R, TOLLENAERE M. Automated AI-based mechanical design of hydraulic manifold blocks[J]. Computer Aided Design, 1991, 23(3): 213-222.doi:10.1016/0010-4485(91)90091-A
      TOLLENAERE M. Benefits of an object based approach for the development of an intelligent CAD system[J]. Proceedings Applications of Artificial Intelligence in Engineering, 1992(2): 127-135.
      田树军,李利,冯毅. 基于计算智能的液压集成块优化设计[J]. 中国机械工程,2003,14(17): 1492-1495.doi:10.3321/j.issn:1004-132X.2003.17.017

      TIAN Shujun, LI Li, FENG Yi. Based on computational intelligence optimization design of hydraulic manifold blocks[J]. China Mechanical Engineering, 2003, 14(17): 1492-1495.doi:10.3321/j.issn:1004-132X.2003.17.017
      田树军,张宏. 液压管路动态特性的 Simulink 仿真及其应用[J]. 系统仿真学报,2006,18(5): 1136-1138.doi:10.3969/j.issn.1004-731X.2006.05.013

      TIAN Shujun, ZHANG Hong. The dynamic characteristics of hydraulic line Simulink simulation and its application[J]. Journal of System Simulation, 2006, 18(5): 1136-1138.doi:10.3969/j.issn.1004-731X.2006.05.013
      张宏. 基于管网液流特性仿真的液压集成块优化设计[D]. 大连: 大连理工大学, 2006.
      张怀亮,彭玲,周井行. TBM液压阀块流道压降特性研究[J]. 华南理工大学学报(自然科学版),2017,45(9): 34-39, 66.doi:10.3969/j.issn.1000-565X.2017.09.005

      ZHANG Huailiang, PENG Ling, ZHOU Jingxing. Research on pressure drop characteristics of the flow channel in hydraulic valve block for TBM[J]. Journal of South China University of Technology (Natural Science Edition), 2017, 45(9): 34-39, 66.doi:10.3969/j.issn.1000-565X.2017.09.005
    • 加载中
    图(14)/ 表(2)
    计量
    • 文章访问数:592
    • HTML全文浏览量:300
    • PDF下载量:14
    • 被引次数:0
    出版历程
    • 收稿日期:2018-02-23
    • 修回日期:2018-09-18
    • 网络出版日期:2018-10-10
    • 刊出日期:2020-02-01

    目录

      /

        返回文章
        返回
          Baidu
          map