• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

滚动方向对CL60车轮材料接触疲劳损伤的影响

胡月,李群,刘启跃,郭俊,王文健

downloadPDF
胡月, 李群, 刘启跃, 郭俊, 王文健. 滚动方向对CL60车轮材料接触疲劳损伤的影响[J]. 江南娱乐网页版入口官网下载安装学报, 2020, 55(1): 84-91. doi: 10.3969/j.issn.0258-2724.20180073
引用本文: 胡月, 李群, 刘启跃, 郭俊, 王文健. 滚动方向对CL60车轮材料接触疲劳损伤的影响[J]. 江南娱乐网页版入口官网下载安装学报, 2020, 55(1): 84-91.doi:10.3969/j.issn.0258-2724.20180073
HU Yue, LI Qun, LIU Qiyue, GUO Jun, WANG Wenjian. Effect of Rolling Direction on Contact Fatigue Damage of CL60 Wheel Steel[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 84-91. doi: 10.3969/j.issn.0258-2724.20180073
Citation: HU Yue, LI Qun, LIU Qiyue, GUO Jun, WANG Wenjian. Effect of Rolling Direction on Contact Fatigue Damage of CL60 Wheel Steel[J].Journal of Southwest Jiaotong University, 2020, 55(1): 84-91.doi:10.3969/j.issn.0258-2724.20180073

滚动方向对CL60车轮材料接触疲劳损伤的影响

doi:10.3969/j.issn.0258-2724.20180073
基金项目:国家自然科学基金资助项目(51775455,51475393);国家重点实验室自主研究课题(2018TPL-T02)
详细信息
    作者简介:

    胡月(1993—),女,博士研究生,研究方向为轮轨系统摩擦学,E-mail:787531808@qq.com

    通讯作者:

    郭俊(1972—),男,研究员,研究方向为高速轮轨关系,E-mail:guojun@swjtu.edu.cn

  • 中图分类号:TH117.1

Effect of Rolling Direction on Contact Fatigue Damage of CL60 Wheel Steel

    • 摘要:为研究车轮滚动方向对车轮材料接触疲劳损伤的影响机制,利用WR-1滚动磨损试验机进行了车轮单向和双向运行滚滑磨损试验,使用光镜和扫描电镜分析了试验后车轮试样的表面磨损形貌、剖面疲劳裂纹形貌及磨屑尺寸,探究了换向运行工况下车轮表面损伤、裂纹扩展、磨屑尺寸随反向循环次数的演变规律. 研究结果表明:车轮表面损伤以起皮剥落为主,反向循环次数从1万次增加到12万次时,初始剥落逐渐消失,继而形成与原滚动方向相反的新剥落,相同循环次数下改变车轮滚动方向有利于减轻车轮材料疲劳损伤;车轮换向改变了表面微裂纹的扩展方向,形成4°~8° 的反向疲劳裂纹,并出现了裂纹扭曲和分支现象;单向滚动时,随循环次数增加,磨屑尺寸先增大后减小,反向后磨屑厚度先增大后减小,反向1万次时,磨屑厚度增大到10~12 μm,为单向时的两倍.

    • 图 1轮轨试样尺寸

      Figure 1.Specimen size of wheel and rail

      图 2车轮试样表面磨损形貌SEM图片

      Figure 2.SEM micrographs of worn surface of wheel steels

      图 3车轮试样裂纹形貌

      Figure 3.SEM micrographs of cracks of wheel steels

      图 4车轮试样裂纹总体形貌(12万次后反向1万次)

      Figure 4.General SEM micrographs of cracks of wheel steels (reverse 10 000 cycles after 120 000 cycles)

      图 5单向滚动工况不同试验时间下的磨屑形貌

      Figure 5.SEM micrographs of wear debris under different steps of unidirectional condition

      图 6换向工况下的磨屑形貌

      Figure 6.SEM micrographs of wear debris under reversal conditions

      表 1轮轨试样化学成分质量百分数

      Table 1.Mass percent chemical compositions of wheel and rail %

      项目 C Si Mn P S
      车轮(CL60) 0.550~0.650 0.170~0.370 0.500~0.800 0.035 0.040
      钢轨(U75V) 0.650~0.750 0.150~0.580 0.700~1.200 ≤ 0.025 ≤ 0.025
      下载: 导出CSV
    • DONZELLA G, FACCOLI M, GHIDINI A, et al. The competitive role of wear and RCF in a rail steel[J]. Engineering Fracture Mechanics, 2005, 72: 287-308.doi:10.1016/j.engfracmech.2004.04.011
      CANNON D F, PRADIER H. Rail rolling contact fatigue research by the European Rail Research Institute[J]. Wear, 1996, 191(1/2): 1-13.
      EKBERG A, KABO E. Fatigue of railway wheels and rails under rolling contact and thermal loading—an overview[J]. Wear, 2005, 258: 1288-1300.doi:10.1016/j.wear.2004.03.039
      刘启跃, 何成刚,黄育斌,等. 轮轨疲劳损伤模拟实验研究及展望[J]. 江南娱乐网页版入口官网下载安装学报,2016,51(2): 282-290.doi:10.3969/j.issn.0258-2724.2016.02.008

      LIU Qiyue, HE Chenggang, HUANG Yubin, et al. Research and prospects of simulation experiment on wheel/rail fatigue damage[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 282-290.doi:10.3969/j.issn.0258-2724.2016.02.008
      KAMMERHOFER C, HOHENWARTER A, PIPPAN R. A novel laboratory test rig for probing the sensitivity of rail steels to RCF and wear-first experimental results[J]. Wear, 2014, 316: 101-108.doi:10.1016/j.wear.2014.04.008
      KRÁČALÍK M, TRUMMER G, DAVES W. Application of 2D finite element analysis to compare cracking behaviour in twin-disc tests and full scale wheel/rail experiments[J]. Wear, 2016, 346: 140-147.
      DIRKS B, ENBLOM R, BERG M. Prediction of wheel profile wear and crack growth:comparisons with measurements[J]. Wear, 2016, 366: 84-94.
      李晓宇. 钢轨踏面斜裂纹扩展行为的仿真研究[D]. 北京: 铁道科学研究院, 2007.
      KAPOOR A, FLETCHER D I, FRANKLIN F J. The role of wear in enhancing rail life[J]. Tribology Series, 2003, 41: 331-340.doi:10.1016/S0167-8922(03)80146-3
      王文健. 轮轨滚动接触疲劳与磨损耦合关系及预防措施研究[D]. 成都: 江南娱乐网页版入口官网下载安装, 2008.
      黄育斌,何成刚,马蕾,等. 干态下车轮材料表面疲劳裂纹萌生试验研究[J]. 摩擦学学报,2016,36(2): 194-200.

      HUANG Yubin, HE Chenggang, MA Lei, et al. Experimental study on initiation of surface fatigue crack of wheel material under dry condition[J]. Tribology Journal, 2016, 36(2): 194-200.
      黄育斌. 轮轨材料表面疲劳裂纹形成机理与演变研究[D]. 成都: 江南娱乐网页版入口官网下载安装, 2016.
      FUJITA K, FUJITA A. The effect of changing the rolling direction on the rolling contact fatigue lives of annealed and case-hardened steel rollers[J]. Wear, 1977, 43(3): 315-327.doi:10.1016/0043-1648(77)90128-4
      TYFOUR W R, BEYNON J H. The effect of rolling direction reversal on fatigue crack morphology and propagation[J]. Tribology International, 1994, 27(4): 273-282.doi:10.1016/0301-679X(94)90007-8
      TYFOUR W R, BEYNON J H. The effect of rolling direction reversal on the wear rate and wear mechanism of pearlitic rail steel[J]. Tribology International, 1994, 27(6): 401-412.doi:10.1016/0301-679X(94)90017-5
      ASADI A L, KAPOOR A. An investigation to the influence of bogie direction reversal on equalizing rail vehicle wheel wear[J]. Wear, 2008, 265: 65-71.doi:10.1016/j.wear.2007.08.023
      ASADI A L, YOUNESIAN D, SCHMID F. Tangential force variation due to the bogie direction reversal procedure[J]. Vehicle System Dynamics, 2007, 45(4): 359-373.doi:10.1080/00423110600999912
      MA L, SHI L B, GUO J, et al. On the wear and damage characteristics of rail material under low temperature environment condition[J]. Wear, 2018, 394: 149-158.
      LEWIS R, MAGEL E, WANG W J, et al. Towards a standard approach for the wear testing of wheel and rail materials[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2017, 231(7): 760-774.doi:10.1177/0954409717700531
      KAPOOR A. Wear by plastic ratcheting[J]. Wear, 1997, 212: 119-130.doi:10.1016/S0043-1648(97)00083-5
      WAGNER F, OUAREM A, GU C F, et al. A new method to determine plastic deformation at the grain scale[J]. Materials Characterization, 2014, 92: 106-117.doi:10.1016/j.matchar.2014.03.007
      TRUMMER G, MARTE C, DIETMAIER P, et al. Modeling surface rolling contact fatigue crack initiation taking severe plastic shear deformation into account[J]. Wear, 2016, 352: 136-145.
      SUH P N. The delamination theory of wear[J]. Wear, 1973, 25: 111-124.doi:10.1016/0043-1648(73)90125-7
    • 加载中
    图(6)/ 表(1)
    计量
    • 文章访问数:631
    • HTML全文浏览量:305
    • PDF下载量:19
    • 被引次数:0
    出版历程
    • 收稿日期:2018-01-31
    • 修回日期:2018-04-26
    • 网络出版日期:2018-05-22
    • 刊出日期:2020-02-01

    目录

      /

        返回文章
        返回
          Baidu
          map