• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

高铁扣件的自适应视觉检测算法

范宏,侯云,李柏林,熊鹰

downloadPDF
范宏, 侯云, 李柏林, 熊鹰. 高铁扣件的自适应视觉检测算法[J]. 江南娱乐网页版入口官网下载安装学报, 2020, 55(4): 896-902. doi: 10.3969/j.issn.0258-2724.20180496
引用本文: 范宏, 侯云, 李柏林, 熊鹰. 高铁扣件的自适应视觉检测算法[J]. 江南娱乐网页版入口官网下载安装学报, 2020, 55(4): 896-902.doi:10.3969/j.issn.0258-2724.20180496
FAN Hong, HOU Yun, LI Bailin, XIONG Ying. Adaptive Detection Algorithm for High-Speed Railway Fasteners by Vision[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 896-902. doi: 10.3969/j.issn.0258-2724.20180496
Citation: FAN Hong, HOU Yun, LI Bailin, XIONG Ying. Adaptive Detection Algorithm for High-Speed Railway Fasteners by Vision[J].Journal of Southwest Jiaotong University, 2020, 55(4): 896-902.doi:10.3969/j.issn.0258-2724.20180496

高铁扣件的自适应视觉检测算法

doi:10.3969/j.issn.0258-2724.20180496
基金项目:四川省科技计划项目(2018GZ0361)
详细信息
    作者简介:

    范宏(1985—),男,博士研究生,研究方向为机器视觉与模式识别,E-mail:hg.fan@foxmail.com

    通讯作者:

    李柏林(1962—),男,教授,研究方向为计算机图形图像处理,E-mail:blli62@263.net

  • 中图分类号:TP391.41

Adaptive Detection Algorithm for High-Speed Railway Fasteners by Vision

    • 摘要:为了实现高铁缺陷扣件的准确、快速和自动化检测,提出一种基于图像处理技术的高铁扣件自适应视觉检测算法. 针对高铁扣件图像的特性,使用改进的LBP (local binary pattern)算子提取扣件的显著特征;在扣件特征图的基础上,采用模板匹配算法得到扣件区域在原始图中的精确位置,进而得到扣件子图并用扣件的位置信息校验定位结果;以相邻两个扣件子图的差值作为判断依据,如果差值大于预设的阈值,相应的扣件则被判断为缺陷扣件. 将该检测算法应用于高铁工务部门提供的真实扣件图. 研究结果表明:本文提出的自适应扣件检测算法在雨天的表现最差,检出率为96%,误检率为0.50%;在晴天的表现最好,检出率为100%,误检率为0.22%;在不同天气、光照、环境下的综合检出率为99%,综合误检率为0.33%.

    • 图 1原始LBP的邻域结构及其权重

      Figure 1.Neighborhood structures of original LBP and its weights (N= 8,R= 1)

      图 2改进LBP的邻域结构及其权重

      Figure 2.Neighborhood structures of improved LBP and its weights (N= 4,R= 1)

      图 3使用不同邻域半径的扣件改进LBP

      Figure 3.Fastener image coded by improved LBP with different neighborhood radius

      图 4原始LBP与改进LBP对扣件噪声图像的编码结果对比

      Figure 4.Comparison of coding results for fastener noise images using original LBP and improved LBP

      图 5模板与掩膜

      Figure 5.Template and mask

      图 6改进LBP编码的原始图像

      Figure 6.Original image encoded by improved LBP

      图 7扣件定位

      Figure 7.fastener localization

      图 8相邻扣件的位置关系

      Figure 8.Positional relationship of adjacent fasteners

      图 9相邻扣件及其特征图对比

      Figure 9.Comparison of adjacent fasteners and their feature maps

      图 10原始测试图像

      Figure 10.Original test images

      表 1扣件定位结果

      Table 1.Results of fastener localization

      定位方法 输入图像数/(× 104幅) 图像大小/像素 包含扣件数/(× 104个) 准确定位/幅 定位准确率/%
      Yang[10] 3 1 000 × 350 18 27 504 91.68
      Feng[14] 3 1 000 × 350 18 28 272 94.24
      Original LBP 3 1 000 × 350 18 28 956 96.52
      本文方法 3 1 000 × 350 18 29 988 99.96
      下载: 导出CSV

      表 2扣件识别结果(Td= 0.3)

      Table 2.Results of fastener recognition algorithm (Td= 0.3)

      图像类别 输入图像总数/(× 103幅) 正常图像数/幅 缺陷图像数/幅 正确检出/幅 错误检出/幅 检出率/% 误检率/%
      高光照 5 4 968 32 32 16 100.00 0.32
      低光照 5 4 964 36 35 21 97.22 0.42
      雨天 5 4 975 25 24 25 96.00 0.50
      晴天 5 4 966 34 34 11 100.00 0.22
      新线路 5 4 972 28 28 12 100.00 0.24
      老线路 5 4 955 45 45 14 100.00 0.28
      综合 30 29 800 200 198 99 99.00 0.33
      下载: 导出CSV
    • 肖新标,金学松,温泽峰. 钢轨扣件失效对列车动态脱轨的影响[J]. 交通运输工程学报,2006,6(1): 10-15.doi:10.3321/j.issn:1671-1637.2006.01.002

      XIAO Xinbiao, JIN Xuesong, WEN Zefeng. Influence of rail fastener failure on vehicle dynamic derailment[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 10-15.doi:10.3321/j.issn:1671-1637.2006.01.002
      翟婉明,赵春发. 现代轨道交通工程科技前沿与挑战[J]. 江南娱乐网页版入口官网下载安装学报,2016,51(2): 209-226.doi:10.3969/j.issn.0258-2724.2016.02.001

      ZHAI Wanming, ZHAO Chunfa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226.doi:10.3969/j.issn.0258-2724.2016.02.001
      LI Q, REN S. A real-time visual inspection system for discrete surface defects of rail heads[J]. IEEE Transaction on Instrumentation and Measurement, 2012, 61(8): 2189-2199.doi:10.1109/TIM.2012.2184959
      WU X, YUAN P, PENG Q, et al. Detection of bird nests in overhead catenary system images for high-speed rail[J]. Pattern Recognition, 2016, 51: 242-254.doi:10.1016/j.patcog.2015.09.010
      SUN J, XIAO Z, XIE Y. Automatic multi-fault recognition in TFDS based on convolutional neural network[J]. Neurocomputing, 2017, 222: 127-136.doi:10.1016/j.neucom.2016.10.018
      QIAO Y, CAPPELLE C, RUICHEK Y. Visual localization across seasons using sequence matching based on multi-feature combination[J]. Sensors, 2017, 17: 24-42.
      SINGH M, SINGH S, JAISWAL J, et al. Autonomous rail track inspection using vision based system[C]//Proceedings of IEEE Int. Conf. Comput. Intell. Homeland Security Personal Safety. Piscataway: IEEE, 2006: 56-59.
      MARINO F, DISTANTE A, MAZZEO P, et al. A real-time visual inspection system for railway maintenance:automatic hexagonal-headed bolts detection[J]. IEEE Transactions on Systems,Man and Cybernetics,Part C (Applications and Reviews), 2007, 37(3): 418-428.doi:10.1109/TSMCC.2007.893278
      STELLA E, MAZZEO P, NITTI M, et al. Visual recognition of missing fastening elements for railroad maintenance[C]// Proceedings of IEEE Int. Conf. Intell. Transp. Syst. Piscataway: IEEE, 2002: 94-99.
      YANG J, TAO W, LIU M, et al. An efficient direction field-based method for the detection of fasteners on high-speed railways[J]. Sensors, 2011, 11: 7364-7381
      XIA Y, XIE F, JIANG Z. Broken railway fastener detection based on adaboost algorithm[C]//Proceedings of International Conference on Optoelectronics and Image Processing. Washington D. C.: IEEE, 2010: 313-316.
      刘甲甲,李柏林,罗建桥,等. 融合PHOG和MSLBP特征的铁路扣件检测算法[J]. 江南娱乐网页版入口官网下载安装学报,2015,50(2): 256-263.doi:10.3969/j.issn.0258-2724.2015.02.008

      LIU Jiajia, LI Bailin, LUO Jianqiao, et al. Railway fastener detection algorithm integrating PHOG and MSLBP features[J]. Journal of Southwest Jiaotong University, 2015, 50(2): 256-263.doi:10.3969/j.issn.0258-2724.2015.02.008
      LI Y, OTTO C, HAAS N, et al. Component-based track inspection using machine-vision technology[C]// Proceedings of the 1st ACM International Conference on Multimedia Retrieval. New York: ACM, 2011: 60-61.
      FENG H, JIANG Z, XIE F, et al. Automatic fastener classification and defect detection in vision-based railway inspection systems[J]. IEEE Trans. Instrumentation and Measurement, 2014, 63(4): 877-888.doi:10.1109/TIM.2013.2283741
      OJALA T, PIETIKAINEN M, MAENPAA T. Multi-resolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.doi:10.1109/TPAMI.2002.1017623
    • 加载中
    图(10)/ 表(2)
    计量
    • 文章访问数:1081
    • HTML全文浏览量:428
    • PDF下载量:45
    • 被引次数:0
    出版历程
    • 收稿日期:2018-07-16
    • 修回日期:2018-11-07
    • 网络出版日期:2018-11-13
    • 刊出日期:2020-08-01

    目录

      /

        返回文章
        返回
          Baidu
          map