• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于改进安全域的轴箱轴承状态监测

赵聪聪,白杨,刘玉梅,赵颖慧,施继红

downloadPDF
赵聪聪, 白杨, 刘玉梅, 赵颖慧, 施继红. 基于改进安全域的轴箱轴承状态监测[J]. 江南娱乐网页版入口官网下载安装学报, 2020, 55(4): 889-895. doi: 10.3969/j.issn.0258-2724.20180584
引用本文: 赵聪聪, 白杨, 刘玉梅, 赵颖慧, 施继红. 基于改进安全域的轴箱轴承状态监测[J]. 江南娱乐网页版入口官网下载安装学报, 2020, 55(4): 889-895.doi:10.3969/j.issn.0258-2724.20180584
ZHAO Congcong, BAI Yang, LIU Yumei, ZHAO Yinghui, SHI Jihong. Condition Monitoring of Axle Box Bearing Based on Improved Safety Region[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 889-895. doi: 10.3969/j.issn.0258-2724.20180584
Citation: ZHAO Congcong, BAI Yang, LIU Yumei, ZHAO Yinghui, SHI Jihong. Condition Monitoring of Axle Box Bearing Based on Improved Safety Region[J].Journal of Southwest Jiaotong University, 2020, 55(4): 889-895.doi:10.3969/j.issn.0258-2724.20180584

基于改进安全域的轴箱轴承状态监测

doi:10.3969/j.issn.0258-2724.20180584
基金项目:国家自然科学基金资助项目(51575232);吉林省科技厅重点科技攻关项目(20160204018GX);吉林省科技厅自然科学基(20180101056JC)
详细信息
    作者简介:

    赵聪聪(1987—),女,讲师,研究方向为轨道车辆工程,E-mail:zhaocongcong0328@163.com

    通讯作者:

    刘玉梅(1966—),女,教授,研究方向为轨道车辆工程,E-mail:lymlls@163.com

  • 中图分类号:U260

Condition Monitoring of Axle Box Bearing Based on Improved Safety Region

    • 摘要:为了提高高速列车轴箱轴承的运行可靠性,将安全域理论引入到轴承的状态监测,并将传统安全域估计转化为确定安全域的边界值来避免复杂模型参数的影响;利用归一化内禀模态分量的能量距构建轴承运行的状态特征向量,根据关联函数建立轴承安全域边界值估计模型,采用粒子群优化算法进行寻优求解;基于求解结果,结合关联函数定量分析轴承的运行状态,利用轴承全寿命疲劳试验进行验证,并将该方法应用于轴箱轴承的状态监测. 研究结果表明:全寿命试验的轴承运行状态的检出率和分类正确率分别为0.951和0.939;高速列车轴箱轴承运行状态的分类正确率为0.935,轴承运行正常,与其实际状态相一致.

    • 图 1二维变量的安全域

      Figure 1.Safety region of two dimensional variables

      图 2轴承寿命疲劳试验台

      Figure 2.Test bench for bearing life fatigue

      图 3轴承1原始振动信号

      Figure 3.Original vibration signal of bearing 1

      图 4检验样本的空间分布

      Figure 4.Spatial distribution of the test samples

      图 5轴承运行状态估计

      Figure 5.Operating state estimation of bearing

      图 6不同样本数量下的轴承运行状态分布

      Figure 6.Operating state distribution of bearing under different sample sizes

      图 7轴箱轴承传感器布置

      Figure 7.Sensor layout on axle box bearing

      图 8轴箱轴承运行状态

      Figure 8.Operating state of axle box bearing

      表 1相关系数均值

      Table 1.Mean values of correlation coefficients

      分量 IMF1 IMF2 IMF3 IMF4 IMF5 IMF6
      均值 0.737 0.474 0.490 0.243 0.150 0.130
      分量 IMF7 IMF8 IMF9 IMF10 r
      均值 0.187 0.111 0.016 0.006 0.006
      下载: 导出CSV

      表 2安全域边界值

      Table 2.Boundary values of safety region

      分量名称 上界 下界
      IMF1 0.517 0.678
      IMF2 0.082 0.156
      IMF3 0.136 0.269
      IMF4 0.016 0.045
      IMF5 0.006 0.022
      IMF6 0.002 0.017
      IMF7 0.008 0.055
      IMF8 0.000 0.015
      下载: 导出CSV

      表 3轴承运行状态分类结果及系统运行时间

      Table 3.Classification results of bearing operating state and system running time

      项目 10 组 50 组 100 组 150 组 200 组 400 组
      检出率 0.343 0.872 0.951 0.941 0.951 0.951
      分类正确率 0.585 0.890 0.939 0.939 0.940 0.938
      运行时间/s 40 190 627 988 1 355 2 528
      下载: 导出CSV
    • YU Jianbo. Bearing performance degradation assessment using locality preserving projections[J]. Expert Systems with Applications, 2011, 38(6): 7440-7450.doi:10.1016/j.eswa.2010.12.079
      赵聪聪. 高速列车传动系统可靠性分析与评估[D]. 长春: 吉林大学, 2016.
      ZHANG Yuan, QIN Yong, XING Zongyi, et al. Roller bearing safety region estimation and state identification based on LMD-PCA-LSSVM[J]. Measurement, 2013, 46(3): 1315-1324.doi:10.1016/j.measurement.2012.11.048
      WU F F, KUMAGAI S. Steady-state security regions of power systems[J]. IEEE Transactions on Circuits and Systems, 1982, 29(11): 703-711.doi:10.1109/TCS.1982.1085091
      刘志亮,刘仕林,李兴林,等. 滚动轴承安全域建模方法及其在高速列车异常检测中的应用[J]. 机械工程学报,2017,53(10): 116-124.doi:10.3901/JME.2017.10.116

      LIU Zhiliang, LIU Shilin, LI Xinglin, et al. Safety domain modelling of rolling bearing and its application to anomaly detection for high-speed rail vehicles[J]. Journal of Mechanical Engineering, 2017, 53(10): 116-124.doi:10.3901/JME.2017.10.116
      冯坚强,李俊明,王晓浩,等. 基于LSSVM和PNN的车轮状态安全域估计及故障诊断[J]. 机械制造与自动化,2017,46(1): 141-145.

      FENG Jianqiang, LI Junming, WANG Xiaohao, et al. Safety region estimation and fault diagnosis of wheels based on least squares support vector machine and probabilistic neural networks[J]. Machine Building & Automation, 2017, 46(1): 141-145.
      HE Yongxiu, DAI Aiying, ZHU Jiang, et al. Risk assessment of urban network planning in china based on the matter-element model and extension analysis[J]. International Journal of Electrical Power and Energy Systems, 2011, 33(3): 775-782.doi:10.1016/j.ijepes.2010.12.037
      WANG Chunlai, WU Aixiang, LU Hui, et al. Predicting rockburst tendency based on fuzzy matter—element model[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 75(2): 224-232.
      刘玉梅,赵聪聪,熊明烨,等. 高速列车传动系统特征参数经典域优化[J]. 江南娱乐网页版入口官网下载安装学报,2016,51(1): 85-90,120.doi:10.3969/j.issn.0258-2724.2016.01.013

      LIU Yumei, ZHAO Congcong, XIONG Mingye, et al. Optimization of classical domains for high-speed train transmission system[J]. Journal of Southwest Jiaotong University, 2016, 51(1): 85-90,120.doi:10.3969/j.issn.0258-2724.2016.01.013
      BEN A J, FNAIECH N, SAIDI L, et al. Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals[J]. Applied Acoustics, 2015, 89(3): 16-27.
      WANG C F, AN G, YANG F J. Research on fault diagnosis of certain armored vehicle’gear-box with IMF’s energy moment[J]. Advanced Materials Research, 2011, 383(11): 248-253.
      QIU H, LEE J, LIN J, et al. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J]. Journal of Sound and Vibration, 2006, 289(1): 1066-1090.
      LIU Y M, ZHAO C C, XIONG M Y, et al. Assessment of bearing performance degradation via extension and EEMD combined approach[J]. Journal of Central South University, 2017, 24(5): 1155-1163.doi:10.1007/s11771-017-3518-5
      陶新民,徐晶,杨立标,等. 基于GARCH模型MSVM的轴承故障诊断方法[J]. 振动与冲击,2010,29(5): 11-15.doi:10.3969/j.issn.1000-3835.2010.05.003

      TAO Xinmin, XU Jing, YANG Libiao, et al. Study of bearing fault diagnosis based on GARCH model[J]. Journal of Vibration and Shock, 2010, 29(5): 11-15.doi:10.3969/j.issn.1000-3835.2010.05.003
    • 加载中
    图(8)/ 表(3)
    计量
    • 文章访问数:747
    • HTML全文浏览量:314
    • PDF下载量:13
    • 被引次数:0
    出版历程
    • 收稿日期:2017-11-30
    • 修回日期:2019-04-28
    • 网络出版日期:2019-05-09
    • 刊出日期:2020-08-01

    目录

      /

        返回文章
        返回
          Baidu
          map