• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

滑坡灾情数据多层级语义检索方法

朱庆,李茂粟,丁雨淋,冯斌,张骏骁,曹振宇,仇林遥,殷浩

downloadPDF
朱庆, 李茂粟, 丁雨淋, 冯斌, 张骏骁, 曹振宇, 仇林遥, 殷浩. 滑坡灾情数据多层级语义检索方法[J]. 江南娱乐网页版入口官网下载安装学报, 2020, 55(3): 467-475. doi: 10.3969/j.issn.0258-2724.20180695
引用本文: 朱庆, 李茂粟, 丁雨淋, 冯斌, 张骏骁, 曹振宇, 仇林遥, 殷浩. 滑坡灾情数据多层级语义检索方法[J]. 江南娱乐网页版入口官网下载安装学报, 2020, 55(3): 467-475.doi:10.3969/j.issn.0258-2724.20180695
ZHU Qing, LI Maosu, DING Yulin, FENG Bin, ZHANG Junxiao, CAO Zhenyu, QIU Linyao, YIN Hao. Multi-level Semantic Retrieval Method for Landslide Disaster Data[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 467-475. doi: 10.3969/j.issn.0258-2724.20180695
Citation: ZHU Qing, LI Maosu, DING Yulin, FENG Bin, ZHANG Junxiao, CAO Zhenyu, QIU Linyao, YIN Hao. Multi-level Semantic Retrieval Method for Landslide Disaster Data[J].Journal of Southwest Jiaotong University, 2020, 55(3): 467-475.doi:10.3969/j.issn.0258-2724.20180695

滑坡灾情数据多层级语义检索方法

doi:10.3969/j.issn.0258-2724.20180695
基金项目:国家自然科学基金(41501421);国家基础测绘科技项目(2018KJ0300,2018KJ0303);四川省科技计划项目(18ZDYF2292)
详细信息
    作者简介:

    朱庆(1966—),男,教授,博士,博士生导师,研究方向为摄影测量、地理信息系统、虚拟地理环境,E-mail:zhuq66@263.net

  • 中图分类号:V221.3

Multi-level Semantic Retrieval Method for Landslide Disaster Data

    • 摘要:如何在海量多源多模态的滑坡灾害时空大数据中快速精准地发现满足灾情评估任务需求的优势信息,是综合减灾救灾的关键. 传统灾害数据检索多以“人工经验+关键字”的被动检索方式为主,难以兼顾任务的精确性与时效性,为此,提出了一种面向评估任务的滑坡灾情数据多层级语义检索方法. 通过建立滑坡灾情评估任务对数据特征需求的显式语义描述及任务需求与数据特征之间的高级语义映射,并据此设计多层级语义匹配的数据检索算法,面向灾情评估任务实现优势数据汇聚. 以四川茂县滑坡灾害评估为例进行实验分析,本文检索方法查询效率具有明显优势,900 km 2、90 d范围内的灾情数据精准检索效率达到秒级,且推荐优势数据集的准确性高,60 d时间差距阈值下推荐结果平均贴近度达到90%以上. 结果表明本方法可根据任务需求准确可靠地快速自动获取灾害数据,从而显著提高减灾应急响应能力.

    • 图 1面向滑坡灾情评估任务的数据多级需求语义映射

      Figure 1.Multi-level requirement semantic mapping of data for landslide disaster assessment tasks

      图 2时空索引框架

      Figure 2.Spatio-temporal index frame

      图 3基于内存直接管理的数据细化筛选流程

      Figure 3.Data refinement and filtering process based on direct memory management

      图 4数据多维特征聚类

      Figure 4.Multidimensional feature clustering of data

      图 5原型系统数据推荐结果

      Figure 5.Recommended results of prototype system data

      图 6效率与准确性分析

      Figure 6.Efficiency and accuracy analysis

    • 范一大,吴玮,王薇,等. 中国灾害遥感研究进展[J]. 遥感学报,2016,20(5): 1170-1184.

      FAN Yida, WU Wei, WANG Wei, et al. Research progress of disaster remote sensing in China[J]. Journal of Remote Sensing, 2016, 20(5): 1170-1184.
      朱庆,曹振宇,林珲,等. 应急测绘保障体系若干关键问题研究[J]. 武汉大学学报(信息科学版),2014,39(5): 551-555.

      ZHU Qing, CAO Zhenyu, LIN Hui, et al. Key technologies of emergency surveying and mapping service system[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 551-555.
      袁艺. 自然灾害灾情评估研究与实践进展[J]. 地球科学进展,2010,25(1): 22-32.

      YUAN Yi. Advances in the assessment of natural disaster situation[J]. Advances in Earth Science, 2010, 25(1): 22-32.
      吕雪锋,程承旗,龚健雅,等. 海量遥感数据存储管理技术综述[J]. 中国科学:技术科学,2011,41(12): 1561-1573.

      LÜ Xuefeng, CHENG Chengqi, GONG Jianya, et al. Review of data storage and management technologies for massive remote sensing data[J]. Science Sinica Technologica, 2011, 41(12): 1561-1573.
      BORKULO E V, BARBOSA V. Services for emergency response systems in the Netherlands[C]//Proceedings of the Second Symposium on Gi4DM. Goa: [s.n.], 2006: 1-6.
      范一大,杨思全,王磊,等. 汶川地震应急监测评估方法研究[J]. 遥感学报,2008,12(6): 858-864.

      FAN Yida, YANG Siquan, WANG Lei, et al. Study on urgent monitoring and assessment in Wenchuan earthquake[J]. Journal of Remote Sensing, 2008, 12(6): 858-864.
      曹振宇. 自然灾害应急测绘信息服务机制与方法[D]. 武汉: 武汉大学, 2014.
      仇林遥. 面向自然灾害应急任务的时空数据智能聚合方法[D]. 武汉: 武汉大学, 2017.
      夏兴生,朱秀芳,潘耀忠,等. 基于历史案例的自然灾害灾情评估方法研究[J]. 灾害学,2016,31(1): 219-225.

      XIA Xingsheng, ZHU Xiufang, PAN Yaozhong, et al. Study on evaluation method of natural disaster based on historical cases[J]. Journal of Catastrophology, 2016, 31(1): 219-225.
      刘同来,韩飞,张万桢. 基于MapReduce的海洋异构数据快速检索方法[J]. 桂林电子科技大学学报,2018,38(5): 407-410.

      LIU Tonglai, HAN Fei, ZHANG Wanzhen. Map-Reducebased fast retrieval method for heterogeneous ocean data[J]. Journal of Guilin University of Electronic Technology, 2018, 38(5): 407-410.
      姚梦辉,刘军旗,封瑞雪,等. 地质灾害信息存储技术及检索方法[J]. 计算机系统应用,2018,27(6): 209-213.

      YAO Menghui, LIU Junqi, FENG Ruixue, et al. Geological hazard information storage technology and retrieval method[J]. Computer Systems & Applications, 2018, 27(6): 209-213.
      廖永丰,李博,吕雪锋,等. 基于GeoSOT编码的多元灾害数据一体化组织管理方法研究[J]. 地理与地理信息科学,2013,29(5): 36-40.

      LIAO Yongfeng, LI Bo, LÜ Xuefeng, et al. Method of multi-type disaster data organization and management based on GeoSOT[J]. Geography and Geo-information Science, 2013, 29(5): 36-40.
      DING Yulin, FAN Yida, DU Zhiqiang, et al. An integrated geospatial information service system for disaster management in China[J]. International Journal of Digital Earth, 2015, 8(11): 918-945.doi:10.1080/17538947.2014.955540
      WIEGAND N, CASSANDRA G. A task-based ontology approach to automate geospatial data retrieval[J]. Transactions in GIS, 2007, 11(3): 355-376.doi:10.1111/j.1467-9671.2007.01050.x
      LI Ping, TAO Xiaxin, ZHANG Jinquan, et al. Retrieval module to choose satellite images by considering the demand of disaster mitigation[C]//Inter-national Conference on Remote Sensing. Nanjing: IEEE, 2011: 685-688.
      FAN Zhengjie, ZLATANOVA S. Exploring ontologies for semantic interoperability of data in emergency response[J]. Applied Geomatics, 2011, 3(2): 109-122.doi:10.1007/s12518-011-0048-y
      FAN Minghu, FAN Hong, CHEN Nengcheng, et al. Active on-demand service method based on event-driven architecture for geospatial data retrieval[J]. Computers & Geosciences, 2013, 56: 1-11.
      QIU Linyao, ZHU Qing, GU Jieye, et al. A task-driven disaster data link approach[J]. International Archives of the Photogrammetry Remote Sensing & S, 2015, XL-3\ISPRS: 179-186.
      唐川,张军,万石云,等. 基于高分辨率遥感影象的城市泥石流灾害损失评估[J]. 地理科学,2006,26(3): 358-363.

      TANG Chuan, ZHANG Jun, WAN Shiyun, et al. Loss evaluation of urban debris flow hazard using high spatial resolution satellite imagery[J]. Scientia Geographica Sinica, 2006, 26(3): 358-363.
      范一大. 重特大自然灾害损失综合评估进展[J]. 中国减灾,2015(21): 47.
      RADKE R J, ANDRA S, AL-KOFAHI O, et al. Image change detection algorithms:a systematic survey[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2005, 14(3): 294-307.doi:10.1109/TIP.2004.838698
      MAULIK U, CHAKRABORTY D. Learning with transductive SVM for semisupervised pixel classification of remote sensing imagery[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2013, 77(3): 66-78.
      BLASCHKE T. Object based image analysis for remote sensing[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2010, 65(1): 2-16.
      李京. 自然灾害灾情评估模型与方法体系[M]. 北京: 科学出版社, 2012: 231-232.
      张宝军. 我国自然灾害情况统计制度与标准化进展[J]. 灾害学,2015,30(3): 150-155.

      ZHANG Baojun. Advance in system and standardization of natural disasters information statistics in China[J]. Journal of Catastrophology, 2015, 30(3): 150-155.
      曹闻. 时空数据模型及其应用研究[D]. 郑州: 解放军信息工程大学, 2011.
      黄宇民,范一大,马骏,等. 中国遥感卫星系统灾害监测能力研究[J]. 航天器工程,2014,23(6): 7-12.

      HUANG Yumin, FAN Yida, MA Jun, et al. Research on disaster monitoring ability of Chinese remote satellite system[J]. Spacecraft Engineering, 2014, 23(6): 7-12.
      WANG Jinnian, GU Xingfa, TAO Ming. Classifi-cation and gradation rule for remote sensing satellite data products[J]. Journal of Remote Sensing, 2013, 44(1): 80-85.
      贾永红,李德仁,孙家柄. 多源遥感影像数据融合[J]. 遥感技术与应用,2000,15(1): 41-44.

      JIA Yonghong, LI Deren, SUN Jiabing. Data fusion techniques for multisources remotely sensed imagery[J]. Remote Sensing Technology and Application, 2000, 15(1): 41-44.
      关磊,李华,苏倩,等. 公路路域生态环境遥感监测数据源选取研究[J]. 遥感技术与应用,2013,28(2): 315-323.

      GUAN Lei, LI Hua, SU Qian, et al. Remote sensing data selection research for road ecological environment monitoring[J]. Remote Sensing Technology and Application, 2013, 28(2): 315-323.
      KANUNGO T, MOUNT D M, NETANYAHU N S, et al. An efficient k-means clustering algorithm:analysis and implementation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 881-892.doi:10.1109/TPAMI.2002.1017616
    • 加载中
    图(6)
    计量
    • 文章访问数:783
    • HTML全文浏览量:423
    • PDF下载量:27
    • 被引次数:0
    出版历程
    • 收稿日期:2018-08-21
    • 修回日期:2019-01-08
    • 网络出版日期:2020-01-19
    • 刊出日期:2020-06-01

    目录

      /

        返回文章
        返回
          Baidu
          map