• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于扩张卷积金字塔网络的车道线检测算法

田晟,张剑锋,张裕天,许凯

downloadPDF
田晟, 张剑锋, 张裕天, 许凯. 基于扩张卷积金字塔网络的车道线检测算法[J]. 江南娱乐网页版入口官网下载安装学报, 2020, 55(2): 386-392, 416. doi: 10.3969/j.issn.0258-2724.20181026
引用本文: 田晟, 张剑锋, 张裕天, 许凯. 基于扩张卷积金字塔网络的车道线检测算法[J]. 江南娱乐网页版入口官网下载安装学报, 2020, 55(2): 386-392, 416.doi:10.3969/j.issn.0258-2724.20181026
TIAN Sheng, ZHANG Jianfeng, ZHANG Yutian, XU Kai. Lane Detection Algorithm Based on Dilated Convolution Pyramid Network[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 386-392, 416. doi: 10.3969/j.issn.0258-2724.20181026
Citation: TIAN Sheng, ZHANG Jianfeng, ZHANG Yutian, XU Kai. Lane Detection Algorithm Based on Dilated Convolution Pyramid Network[J].Journal of Southwest Jiaotong University, 2020, 55(2): 386-392, 416.doi:10.3969/j.issn.0258-2724.20181026

基于扩张卷积金字塔网络的车道线检测算法

doi:10.3969/j.issn.0258-2724.20181026
基金项目:国家留学基金(201706155003);广东省科技计划(2015A080803001)
详细信息
    作者简介:

    田晟(1969—),男,副教授,博士,研究方向为交通运输工程,E-mail:shitian1@scut.edu.cn

  • 中图分类号:TN911.73

Lane Detection Algorithm Based on Dilated Convolution Pyramid Network

    • 摘要:为满足汽车高级驾驶辅助系统对车道线检测准确性和时效性的要求,采用改进的ResNet50网络作为基础模型提取局部车道线特征,利用扩张卷积能指数级扩大感受野的特点,设计了扩张卷积金字塔模块,用以完整提取不同尺度的车道线特征,提出“锚点栅格”的思想,将输出划分为一组栅格,对每个栅格进行分类和回归分析,经过非极大值抑制等后处理,最终输出车道线标记点集. 结果表明:在CULane多场景数据集里对模型进行测试,在交并比阈值取为0.3的评估条件下其综合评估指标F-measure达到78.6%,检测速率达到40帧/s,在评估指标相近的情况下具有远高于空间卷积神经网络(spatial convolutional neural networks,SCNN)模型的检测速率,并在眩光、弯道等困难场景中的检测效果优于SCNN.

    • 图 1标准卷积与扩张卷积

      Figure 1.Standard convolution and dilated convolution

      图 2扩张卷积金字塔网络模型

      Figure 2.Dilated convolutional pyramid network model

      图 3扩张卷积感受野

      Figure 3.Receptive filed of dilated convolution

      图 4车道线回归模型

      Figure 4.Lane line regression model

      图 5基于IoU的评估方法

      Figure 5.Evaluation method based on IoU

      表 1两种模型在CULane上的评估结果

      Table 1.Evaluation results of two models on CULane %

      场景 SCNN 扩张卷积金字塔网络
      Pprecision Precall PF-measure Pprecision Precall PF-measure
      标准 95.6/90.8 95.5/90.4 95.7/90.6 92.4/87.8 94.2/89.5 93.3/88.7
      拥挤 80.8/70.4 79.1/68.9 79.9/69.7 78.9/70.5 78.5/70.1 78.7/70.3
      眩光 74.6/60.4 70.8/56.6 72.6/58.4 73.0/62.6 74.4/63.8 73.7/63.2
      阴影 81.7/67.3 80.9/66.7 81.3/67.0 76.6/68.0 78.8/70.0 77.7/69.0
      无标线 60.3/45.7 54.6/41.3 57.3/43.4 56.6/46.4 54.9/45.0 55.7/45.7
      箭头 92.5/85.5 89.5/82.7 91.0/84.1 87.2/82.3 86.8/81.9 87.0/82.1
      弯道 84.6/70.2 72.0/59.7 77.8/64.5 83.6/68.9 84.1/69.3 83.8/69.1
      夜晚 78.3/67.4 75.2/64.8 76.7/66.1 73.4/64.6 74.8/65.8 74.1/65.2
      平均值 81.4/72.1 80.3/71.1 80.8/71.6 77.6/70.2 79.8/72.2 78.6/71.2
      下载: 导出CSV

      表 2两种模型的检测效果

      Table 2.Detection effect of the two models

      项目 眩光 阴影 无标线 交叉路口
      真实标签
      SCNN
      扩张卷积金字塔
      网络
      下载: 导出CSV
    • STERNLUND S, STRANDROTH J, RIZZI M, et al. The effectiveness of lane departure warning systems−a reduction in real-world passenger car injury crashes[J]. Traffic Injury Prevention, 2018, 18(2): 225-229.
      钱基德,陈斌,钱基业,等. 基于感兴趣区域模型的车道线快速检测算法[J]. 电子科技大学学报,2018,47(3): 356-361.doi:10.3969/j.issn.1001-0548.2018.03.006

      QIAN Jide, CHEN Bin, QIAN Jiye, et al. Fast lane detection algorithm based on region of interest model[J]. Journal of University of Electronic Science and Technology of China, 2018, 47(3): 356-361.doi:10.3969/j.issn.1001-0548.2018.03.006
      王旭宸,卢欣辰,张恒胜,等. 一种基于平行坐标系的车道线检测算法[J]. 电子科技大学学报,2018,47(3): 362-367.doi:10.3969/j.issn.1001-0548.2018.03.007

      WANG Xuhuan, LU Xinchen, ZHANG Hengsheng, et al. A lane detection method based on parallel coordinate system[J]. Journal of University of Electronic Science and Technology of China, 2018, 47(3): 362-367.doi:10.3969/j.issn.1001-0548.2018.03.007
      SON J, YOO H, KIM S, et al. Real-time illumination invariant lane detection for lane departure warning system[J]. Expert Systems with Applications, 2015, 42(4): 1816-1824.doi:10.1016/j.eswa.2014.10.024
      NEVEN D, DE BRABANDERE B, GEORGOULIS S, et al. Towards end-to-end lane detection: an instance segmentation approach[C]//Proceedings of the 2018 IEEE Intelligent Vehicles Symposium. Suzhou: IEEE, 2018: 286-291.
      徐国晟,张伟伟,吴训成. 基于卷积神经网络的车道线语义分割算法[J]. 电子测量与仪器学报,2018,32(7): 89-94.

      XU Guosheng, ZHANG Weiwei, WU Xuncheng. Laneline semantic segmentation algorithm based on convolutional neural network[J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(7): 89-94.
      GURGHIAN A, KODURI T, BAILUR S V, et al. Deeplanes: end-to-end lane position estimation using deep neural networks[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Las Vegas: IEEE, 2016: 38-45.
      NAROTE S P, BHUJBAL P N, NAROTE A S, et al. A review of recent advances in lane detection and departure warning system[J]. Pattern Recognition, 2018, 73: 216-234.doi:10.1016/j.patcog.2017.08.014
      HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
      ZHOU B, ZHAO H, PUIG X, et al. Semantic understanding of scenes through the ADE20K dataset[J]. International Journal of Computer Vision, 2019, 127: 302-321.doi:10.1007/s11263-018-1140-0
      YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[C]//Proceedings of the 4th International Conference on Learning Representations. Puerto Rico: ICLR, 2016: 1-13.
      CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab:semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.doi:10.1109/TPAMI.2017.2699184
      PAN X, SHI J, LUO P, et al. Spatial as deep: spatial CNN for traffic scene understanding[C]//Proceedings of the Artificial Intelligence. New Orleans: AAAI. 2018: 7276-7283.
      REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 7263-7271.
      GIRSHICK R. Fast R-CNN[C]//Proceedings of the Computer Vision. Santiago: IEEE, 2015: 1440-1448.
    • 加载中
    图(5)/ 表(2)
    计量
    • 文章访问数:760
    • HTML全文浏览量:404
    • PDF下载量:29
    • 被引次数:0
    出版历程
    • 收稿日期:2018-12-06
    • 修回日期:2019-02-21
    • 网络出版日期:2019-03-07
    • 刊出日期:2020-04-01

    目录

      /

        返回文章
        返回
          Baidu
          map