• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于头脑风暴优化的PCNN路面裂缝分割算法

范新南,汪杰,史朋飞,李敏

downloadPDF
范新南, 汪杰, 史朋飞, 李敏. 基于头脑风暴优化的PCNN路面裂缝分割算法[J]. 江南娱乐网页版入口官网下载安装学报, 2021, 56(3): 572-578. doi: 10.3969/j.issn.0258-2724.20190354
引用本文: 范新南, 汪杰, 史朋飞, 李敏. 基于头脑风暴优化的PCNN路面裂缝分割算法[J]. 江南娱乐网页版入口官网下载安装学报, 2021, 56(3): 572-578.doi:10.3969/j.issn.0258-2724.20190354
FAN Xinnan, WANG Jie, SHI Pengfei, LI Min. Pavement Crack Segmentation Algorithm Based on Pulse Coupled Neural Network with Brainstorming Optimization[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 572-578. doi: 10.3969/j.issn.0258-2724.20190354
Citation: FAN Xinnan, WANG Jie, SHI Pengfei, LI Min. Pavement Crack Segmentation Algorithm Based on Pulse Coupled Neural Network with Brainstorming Optimization[J].Journal of Southwest Jiaotong University, 2021, 56(3): 572-578.doi:10.3969/j.issn.0258-2724.20190354

基于头脑风暴优化的PCNN路面裂缝分割算法

doi:10.3969/j.issn.0258-2724.20190354
基金项目:国家自然科学基金(61573128,61801169);江苏省自然科学基金(BK20170305)
详细信息
    作者简介:

    范新南(1965—),男,教授,博导,博士,研究方向为物联网技术及应用、信息获取与信息处理、智能图像处理、计算机测控网络等,E-mail:fanxn@hhuc.edu.cn

  • 中图分类号:U416.2

Pavement Crack Segmentation Algorithm Based on Pulse Coupled Neural Network with Brainstorming Optimization

    • 摘要:为提升裂缝检测的分割精度和鲁棒性,基于头脑风暴优化(brainstorming optimization,BSO)和脉冲耦合神经网络(pulse coupled neural network,PCNN),提出了一种路面裂缝图像分割算法(BSO-PCNN). 该算法采用最大熵准则作为BSO算法的适应度函数,并依据适应度值决定参与次轮迭代的个体;BSO具有强收敛性,可快速确定最优个体解;结合图像特征,获得PCNN模型的最优参数,将其代入PCNN模型实现对裂缝图像的分割. 试验结果表明:算法可在20次迭代内取得不同类型路面裂缝图像的最大适应值,从而确定最佳分割参数;与Sobel边缘检测算法、PCNN图像分割算法、基于最大熵的遗传算法(genetic algorithm based on the maximun entropy of the histogram,GA-KSW)、基于遗传算法参数优化的PCNN分割算法(genetic algorithm based on the pulse coupled neural network,GA-PCNN)相比,BSO-PCNN算法取得了0.9924的区域一致性与0.0900的区域对比度.

    • 图 1BSO参数优化曲线

      Figure 1.Curves of BSO parameter optimization

      表 1不同算法对比试验

      Table 1.Results Experiments of different algorithms comparison

      图像编号 原图 Sobel PCNN GA-KSW GA-PCNN BSO-PCNN
      1
      2
      3
      4
      5
      下载: 导出CSV

      表 2不同算法的区域对比度和区域一致性

      Table 2.Regional contrast and consistency of different algorithms

      图像 区域对比度 区域一致性
      Sobel PCNN GA-KSW GA-PCNN BSO-PCNN Sobel PCNN GA-KSW GA-PCNN BSO-PCNN
      1 0.0487 0.1967 0.0866 0.0736 0.1295 0.9904 0.9909 0.9907 0.9906 0.9909
      2 0.0344 0.0719 0.0887 0.0950 0.0912 0.9878 0.9882 0.9885 0.9885 0.9886
      3 0.0124 0.0236 0.0513 0.0354 0.0642 0.9962 0.9963 0.9965 0.9964 0.9965
      4 0.0814 0.0578 0.1040 0.0938 0.1100 0.9900 0.9898 0.9913 0.9910 0.9913
      5 0.0218 0.0375 0.0500 0.0535 0.0538 0.9943 0.9946 0.9947 0.9945 0.9947
      平均值 0.0397 0.0775 0.0761 0.0703 0.0900 0.9917 0.9920 0.9923 0.9922 0.9924
      下载: 导出CSV

      表 3算法时间和信噪比比较

      Table 3.Comparison of algorithm time and signal-to-noise ratio

      图像 算法运行时间/s 信噪比/dB
      Sobel PCNN GA-KSW GA-PCNN BSO-PCNN Sobel PCNN GA-KSW GA-PCNN BSO-PCNN
      1 0.596 7.483 0.413 3.289 3.147 2.3408 2.2683 3.0673 1.6554 3.4219
      2 0.702 7.378 0.018 3.215 3.017 1.4490 1.9176 3.5000 4.6284 3.4389
      3 0.675 7.424 0.023 3.315 3.046 1.8633 1.6814 3.7504 1.4826 3.8259
      4 0.648 7.480 0.028 3.253 2.981 0.7415 0.0920 0.1070 0.0578 0.2767
      5 0.682 7.632 0.019 3.251 3.003 0.8994 0.0545 1.2121 5.9184 2.6544
      平均值 0.661 7.479 0.100 3.265 3.039 1.4588 1.2028 2.3274 2.7489 2.7236
      下载: 导出CSV
    • OLIVEIRA H, CORREIA P L. Automatic road crack segmentation using entropy and image dynamic thresholding[C]//Proceedings of the 17th European Signal Processing Conference. New York: IEEE, 2009: 622-626.
      FAN X, WU J, SHI P, et al. A novel automatic dam crack detection algorithm based on local-global clustering[J]. Multimed Tools Applications, 2018, 77(22): 26581-26599.
      徐威,唐振民,吕建勇. 基于图像显著性的路面裂缝检测[J]. 中国图象图形学报,2013,18(1): 70-77.

      XU Wei, TANG Zhenmin, LV Jianyong. Pavement crack detection based on image saliency[J]. Journal of Image and Graphics, 2013, 18(1): 70-77.
      沙爱民,童峥,高杰. 基于卷积神经网络的路表病害识别与测量[J]. 中国公路学报,2018,31(1): 1-10.doi:10.3969/j.issn.1001-7372.2018.01.001

      SHA Aimin, TONG Zheng, GAO Jie. Recognition and measurement of pavement disasters based on convolutional neural networks[J]. China Journal of Highway and Transport, 2018, 31(1): 1-10.doi:10.3969/j.issn.1001-7372.2018.01.001
      宋蓓蓓,韦娜. 基于脉冲耦合神经网络的路面裂缝提取[J]. 长安大学学报(自然科学版),2011,31(5): 33-37.

      SONG Beibei, WEI Na. Pavement cracks extraction based on pulse coupled neural network[J]. Journal of Chang’an University (Natural Science Edition), 2011, 31(5): 33-37.
      张坤华,谭志恒,李斌. 结合粒子群优化和综合评价的脉冲耦合神经网络图像自动分割[J]. 光学精密工程,2018,26(4): 962-970.doi:10.3788/OPE.20182604.0962

      ZHANG Kunhua, TAN Zhiheng, LI bin. Automated image segmentation based on pulse coupled neural[J]. Optics and Precision Engineering, 2018, 26(4): 962-970.doi:10.3788/OPE.20182604.0962
      周东国,高潮,郭永彩. 一种参数自适应的简化PCNN图像分割方法[J]. 自动化学报,2014,40(6): 1191-1197.

      ZHOU Dongguo, GAO Chao, GUO Yongcai. Adaptive simplified PCNN parameter setting for image segmentation[J]. Acta Automatica Sinica, 2014, 40(6): 1191-1197.
      赵慧洁,葛文谦,李旭东. 最小误差准则与脉冲耦合神经网络的裂缝检测[J]. 仪器仪表学报,2012,33(3): 637-642.doi:10.3969/j.issn.0254-3087.2012.03.023

      ZHAO Huijie, GE Wenqian, LI Xudong. Detection of crack defect based on minimum error and pulse coupled neural networks[J]. Chinese Journal of Scientific Instrument, 2012, 33(3): 637-642.doi:10.3969/j.issn.0254-3087.2012.03.023
      宰柯楠,徐江峰. 基于遗传算法和简化PCNN的裂缝检测方法[J]. 计算机应用研究,2017,34(6): 1885-1888.doi:10.3969/j.issn.1001-3695.2017.06.065

      ZAI Kenan, XU Jiangfeng. Method of crack detection based on genetic algorithm and simplified pulse coupled neural network[J]. Application Research of Computers, 2017, 34(6): 1885-1888.doi:10.3969/j.issn.1001-3695.2017.06.065
      杨玉婷,史玉回,夏顺仁. 基于讨论机制的BSO算法[J]. 浙江大学学报(工学版),2013,47(10): 1705-1711.

      YANG Yuting, SHI Yuhui, XIA Shunren. Discussion mechanism based brain storm optimization algorithm[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(10): 1705-1711.
      CHENG S, QIN Q, CHEN J, et al. Brain storm optimization algorithm:a review[J]. Artificial Intelligence Review, 2016, 46(4): 445-458.doi:10.1007/s10462-016-9471-0
      CHENG S, SHI Y, QIN Q, et al. Maintaining population diversity in brain storm optimization algorithm[C]//Proceedings of the IEEE Congress on Evolutionary Computation. New York: IEEE, 2014: 3230-3237.
      MAFTEIU-SCAI L O. A new approach for solving equations systems inspired from brainstorming[J]. International Journal of New Computer Architectures and their Applications, 2015, 5(1): 10-18.doi:10.17781/P001642
      LI J, DUAN H. Simplified brain storm optimization approach to control parameter optimization in F/A-18 automatic carrier landing system[J]. Aerospace Science and Technology, 2015, 42: 187-195.doi:10.1016/j.ast.2015.01.017
      ZHOU H, JIANG M, BEN X. Niche brain storm optimization algorithm for multi-peak function optimization[J]. Advanced Materials Research, 2014, 989/990/991/992/993/994: 1626-1630.doi:10.4028/www.scientific.net/AMR.989-994.1626
      GUO X, WU Y, XIE L, et al. An adaptive brain storm optimization algorithm for multiobjective optimization problems[C]//International Conference in Swarm Intelligence. Cham: Springer, 2015: 365-372.
      杨玉婷,段丁娜,张欢,等. 基于改进头脑风暴优化算法的隐马尔可夫模型运动识别[J]. 航天医学与医学工程,2015,28(6): 403-407.

      YANG Yuting, DUAN Dingna, ZHANG Huan, et al. Motion recognition based on hidden Markov model with improved brain storm optimization[J]. Space Medicine and Medical Engineering, 2015, 28(6): 403-407.
      LI S, PU F, LI D. An improved edge detection algorithm based on area morphology and maximum entropy[C]//Second International Conference on Innovative Computing, Information and Control. New York: IEEE, 2007: 536-539.
      曲仕茹,杨红红. 基于遗传算法参数优化的PCNN红外图像分割[J]. 强激光与粒子束,2015,27(5): 38-43.

      QU Shiru, YANG Honghong. Infrared image segmentation based on PCNN with genetic algorithm parameter optimization[J]. High Power Laser and Particle Beams, 2015, 27(5): 38-43.
    • 加载中
    图(1)/ 表(3)
    计量
    • 文章访问数:478
    • HTML全文浏览量:194
    • PDF下载量:20
    • 被引次数:0
    出版历程
    • 收稿日期:2019-04-30
    • 修回日期:2019-11-14
    • 网络出版日期:2020-04-26
    • 刊出日期:2021-06-15

    目录

      /

        返回文章
        返回
          Baidu
          map