• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于几何约束及迭代的NLOS环境定位算法

邓平,谢雪

downloadPDF
邓平, 谢雪. 基于几何约束及迭代的NLOS环境定位算法[J]. 江南娱乐网页版入口官网下载安装学报, 2021, 56(3): 666-672. doi: 10.3969/j.issn.0258-2724.20200094
引用本文: 邓平, 谢雪. 基于几何约束及迭代的NLOS环境定位算法[J]. 江南娱乐网页版入口官网下载安装学报, 2021, 56(3): 666-672.doi:10.3969/j.issn.0258-2724.20200094
DENG Ping, XIE Xue. An NLOS Environment Location Algorithm Based on Geometric Constraint and Iteration[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 666-672. doi: 10.3969/j.issn.0258-2724.20200094
Citation: DENG Ping, XIE Xue. An NLOS Environment Location Algorithm Based on Geometric Constraint and Iteration[J].Journal of Southwest Jiaotong University, 2021, 56(3): 666-672.doi:10.3969/j.issn.0258-2724.20200094

基于几何约束及迭代的NLOS环境定位算法

doi:10.3969/j.issn.0258-2724.20200094
基金项目:国家自然科学基金(61871332)
详细信息
    作者简介:

    邓平(1964—),男,教授,博士,研究方向为无线网络定位技术、统计信号处理、无线传感网络等,E-mail:pdeng@swjtu.edu.cn

  • 中图分类号:TN915.9

An NLOS Environment Location Algorithm Based on Geometric Constraint and Iteration

    • 摘要:针对在非视距 (non-line-of-sight,NLOS)环境中传统最优化定位算法抗NLOS误差能力较弱、且需要一个较准确的初始估计位置以确保算法收敛这一问题,提出一种应用在双基站场景下的基于几何约束及迭代的定位算法. 通过引入最大散射半径作为几何约束条件,以线性迭代方式进行一维全局搜索,并采用最小二乘算法获得移动台(mobile station,MS)初始估计位置,然后利用设定的阈值门限对各初始位置点进行筛选,最后通过加权平均获得MS的最终估计位置. 仿真结果表明:当散射半径为200 m时,本文算法的定位误差在200 m以下的概率能达到100%;在相同环境下,本文算法计算时间开销仅是网格搜索法的0.4%.

    • 图 1基站与移动台位置关系

      Figure 1.Location relationship between BS and MS

      图 2基站、移动台和散射体的几何关系

      Figure 2.Geometric relationship of BS,MS and scatterer

      图 3MLE随散射半径的变化曲线

      Figure 3.MLE variation with scattering radius

      图 4圆盘散射半径为200 m累积分布函数曲线

      Figure 4.CDF curves with scattering radius of 200 m

      图 5MLE与有无散射半径约束的变化曲线

      Figure 5.MLE variation with or without scattering radius constraint

      图 6累积分布函数曲线

      Figure 6.CDF curves with or without scattering radius constraint

      图 7MLE随距离测量误差的变化曲线

      Figure 7.MLE variation with distance measurement error

      图 8MLE随角度测量误差的变化曲线

      Figure 8.MLE variation with angle measurement error

      图 9误差随k的变化曲线

      Figure 9.Location error variation withk

      表 1算法描述

      Table 1.Algorithm description

      算法 描述
      HLOP 混合 TOA/AOA 算法[1]
      IPA-1 约束条件 1 下的内点法[14]
      IPA-2 约束条件 2 下的内点法[14]
      GSA-1 约束条件 1 下的网格法[13]
      GSA-2 约束条件 2 下的网格法[13]
      算法 1 约束条件 1 下的基于迭代的 MS 定位算法
      算法 2 约束条件 2 下的基于迭代的 MS 定位算法
      下载: 导出CSV

      表 2算法时间开销

      Table 2.Algorithm time cost s

      算法 IPA GSA 本文迭代算法
      约束条件 1 0.1786 0.1350 0.0059
      约束条件 2 0.1644 0.1087 0.0050
      下载: 导出CSV
    • VENKATRAMAN S, CAFFERY J. Hybrid TOA/AOA techniques for mobile location in non-line-of-sight environments[C]//Proceedings of IEEE Wireless Communications and Networking Conference. Atlanta: IEEE, 2004: 274-278.
      HASAN S, UKKUSURI S V. Reconstructing activity location sequences from incomplete check-in data:a semi-Markov continuous-time Bayesian network model[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(3): 687-689.doi:10.1109/TITS.2017.2700481
      DIAO Hongxue, ZHAO Junhui. Cmd-based NLOS identification and mitigation in wireless sensor networks[C]//Proceedings of IEEE International Conference on Communications Workshops (ICC Workshops). Shanghai: IEEE, 2019: 1-6.
      DENG Ping. An NLOS error mitigation scheme based on tdoa reconstruction for cellular location services[J]. Chinese Journal of Radio Science, 2003, 18(3): 311-316.
      LIU Lin, DENG Ping, FAN Ping Zhi. A simple and efficient positioning algorithm based on geometry[C]// Proceedings of International Conference on Communications and Mobile Computing. Shenzheng: IEEE, 2010: 374-377.
      VENKATRAMAN S, CAFFERY J, YOU H R. A novel toa location algorithm using los range estimation for nlos environments[J]. IEEE Transactions on Vehicular Technology, 2004, 53(5): 1515-1524.doi:10.1109/TVT.2004.832384
      AL-BAWRI S S, JAMLOS M F, ALJUNID S A. Outdoor location estimation for mobile based on single base station scattering distance[C]//Proceedings of IEEE International RF and Microwave Conference (RFM). Kuching: IEEE, 2015: 92-95.
      CHEN C S. A non-line-of-sight error mitigation method for location estimation[J]. International Journal of Distributed Sensor Networks, 2017, 13(1): 155014771688273.1-15501471688273.15.
      LI W, CHEN Y, ASIF M, A Wi-Fi-based indoor positioning algorithm with mitigating the influence of NLOS[C]//Proceedings of the 8th International Conference on Communication Software and Networks. Beijing: IEEE, 2016: 520-523.
      CHEN C S, CHIU Y J, LIN J M, et al. Geometrical positioning schemes for MS location estimation[C]// Proceedings of International Symposium on Computer, Consumer and Control, Taichung: IEEE, 2012: 487-490.
      XIE Yaqin, WANG Yan, WU Bo, et al. Localization by hybrid TOA, AOA and DSF estimation in NLOS environments[C]//Proceedings of the 72nd IEEE Vehicular Technology Conference. Ottawa: IEEE, 2010: 1-5.
      CHEN C S, HUANG J F, LIN S C, et al. Applying geometric dilution of precision approximation to adaptive neural network learning for precise mobile station positioning[C]//Proceedings of International Conference on Machine Learning and Cybernetics (ICMLC), Chengdu: IEEE, 2018: 474-479.
      WU Shixun, XU Dengyuan, TAN Jin, et al. Two base station location techniques with adjusted measurements in circular scattering environments[J]. International Journal of Communication Systems, 2016, 29(6): 1073-1083.doi:10.1002/dac.3073
      ANTCZAK T. A lower bound for the penalty parameter in the exact minimax penalty function method for solving nondifferentiable extremum problems[J]. Journal of Optimization Theory and Applications, 2013, 159(2): 437-453.doi:10.1007/s10957-013-0335-3
      ALJAZZAR S O, CAFFERY J, YOU H R. A scattering model based approach to nlos mitigation in TOA location systems[C]//Proceedings of the 55th Vehicular Technology Conference (VTC). Birmingham: IEEE, 2002: 861-865.
    • 加载中
    图(9)/ 表(2)
    计量
    • 文章访问数:597
    • HTML全文浏览量:465
    • PDF下载量:28
    • 被引次数:0
    出版历程
    • 收稿日期:2020-03-13
    • 修回日期:2020-06-16
    • 网络出版日期:2020-08-25
    • 刊出日期:2021-06-15

    目录

      /

        返回文章
        返回
          Baidu
          map