• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于多带加权包络谱的轴箱轴承故障诊断

陈丙炎,谷丰收,张卫华,宋冬利,程尧

downloadPDF
陈丙炎, 谷丰收, 张卫华, 宋冬利, 程尧. 基于多带加权包络谱的轴箱轴承故障诊断[J]. 江南娱乐网页版入口官网下载安装学报, 2024, 59(1): 201-210. doi: 10.3969/j.issn.0258-2724.20220047
引用本文: 陈丙炎, 谷丰收, 张卫华, 宋冬利, 程尧. 基于多带加权包络谱的轴箱轴承故障诊断[J]. 江南娱乐网页版入口官网下载安装学报, 2024, 59(1): 201-210.doi:10.3969/j.issn.0258-2724.20220047
CHEN Bingyan, GU Fengshou, ZHANG Weihua, SONG Dongli, CHENG Yao. Axle-Box Bearing Fault Diagnosis Based on Multiband Weighted Envelope Spectrum[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 201-210. doi: 10.3969/j.issn.0258-2724.20220047
Citation: CHEN Bingyan, GU Fengshou, ZHANG Weihua, SONG Dongli, CHENG Yao. Axle-Box Bearing Fault Diagnosis Based on Multiband Weighted Envelope Spectrum[J].Journal of Southwest Jiaotong University, 2024, 59(1): 201-210.doi:10.3969/j.issn.0258-2724.20220047

基于多带加权包络谱的轴箱轴承故障诊断

doi:10.3969/j.issn.0258-2724.20220047
基金项目:国家重点研发计划(2019YFB1405401);国家留学基金(202107000033)
详细信息
    作者简介:

    陈丙炎(1994—),男,博士研究生,研究方向为铁路轴承状态监测和故障诊断,E-mail:chenbingyan@my.swjtu.edu.cn

    通讯作者:

    张卫华(1961—),男,教授,博士,研究方向为机车车辆设计理论、车辆系统动力学,E-mail:tpl@swjtu.edu.cn

  • 中图分类号:U260;U270

Axle-Box Bearing Fault Diagnosis Based on Multiband Weighted Envelope Spectrum

  • 摘要:

    为增强复杂噪声干扰下轴箱轴承故障检测的鲁棒性,基于循环谱分析并考虑轴承故障信息分布差异和阈值降噪,对轴箱轴承故障诊断的包络谱构造方法进行了研究. 首先,提出频域信噪比作为轴承故障信息量化的新测度,用于评估谱相干中不同谱频带内的轴承故障相关信息;其次,构造以谱频率为变量的故障特征信息分布函数,并自适应确定信息阈值来辨识谱相干中故障信息丰富和干扰噪声主导的谱频率分量,进一步基于故障特征信息分布函数和信息阈值设计权重函数;最后,由谱相干和权重函数生成融合多带信息的多带加权包络谱,通过分析谱中的轴承故障特征频率来检测轴箱轴承的不同故障. 铁路轴箱轴承实验数据的分析结果表明:相比于基于谱相干的典型包络谱方法,多带加权包络谱能够在复杂噪声干扰下准确识别轴箱轴承的外圈、滚动体和内圈故障,并能取得更高的性能量化指标(频域信噪比和负熵).

  • 图 1铁路轮对轴承试验台

    Figure 1.Railway wheelset bearing test rig

    图 2外圈故障轴箱轴承的振动信号及其谱相干和EES

    Figure 2.Vibration signal of axle-box bearing with outer race fault and its spectral coherence and EES

    图 3外圈故障轴箱轴承的振动信号的Hilbert包络谱

    Figure 3.Hilbert envelope spectrum of the vibration signal of axle-box bearing with outer race fault

    图 4MWES方法的外圈故障检测结果

    Figure 4.Outer race fault detection results of MWES method

    图 5CIES方法的外圈故障检测结果

    Figure 5.Outer race fault detection results of the CIES method

    图 6WES方法的外圈故障检测结果

    Figure 6.Outer race fault detection results of the WES method

    图 7滚动体故障轴箱轴承的振动信号及其谱相干和EES

    Figure 7.Vibration signal of axle-box bearing with rolling element fault and its spectral coherence and EES

    图 8滚动体故障轴箱轴承的振动信号的Hilbert包络谱

    Figure 8.Hilbert envelope spectrum of the vibration signal of axle-box bearing with rolling element fault

    图 9MWES方法的滚动体故障检测结果

    Figure 9.Rolling element fault detection results of the MWES method

    图 10CIES方法的滚动体故障检测结果

    Figure 10.Rolling element fault detection results of the CIES method

    图 11WES方法的滚动体故障检测结果

    Figure 11.Rolling element fault detection results of the WES method

    图 12内圈故障轴箱轴承的振动信号及其谱相干和EES

    Figure 12.Vibration signal of axle-box bearing with inner race fault and its spectral coherence and EES

    图 13内圈故障轴箱轴承的振动信号的Hilbert包络谱

    Figure 13.Hilbert envelope spectrum of the vibration signal of axle-box bearing with inner race fault

    图 14MWES方法的内圈故障检测结果

    Figure 14.Inner race fault detection results of the MWES method

    图 15CIES方法的内圈故障检测结果

    Figure 15.Inner race fault detection results of the CIES method

    图 16WES方法的内圈故障检测结果

    Figure 16.Inner race fault detection results of the WES method

    表 1不同轴承实验信号包络谱的FDSNR

    Table 1.FDSNR of envelope spectra of different bearing experimental signals

    故障类型 EES MWES CIES WES
    外圈故障 1.912 4.775 3.107 2.384
    滚动体故障 1.966 3.604 2.860 3.059
    内圈故障 1.507 2.949 1.515 1.714
    下载: 导出CSV

    表 2不同轴承实验信号包络谱的负熵

    Table 2.Negentropy of envelope spectra of different bearing experimental signals

    故障类型 EES MWES CIES WES
    外圈故障 0.040 0.136 0.068 0.046
    滚动体故障 0.059 0.176 0.104 0.116
    内圈故障 0.062 0.201 0.064 0.072
    下载: 导出CSV
  • [1] 刘志亮,潘登,左明健,等. 轨道车辆故障诊断研究进展[J]. 机械工程学报,2016,52(14): 134-146.doi:10.3901/JME.2016.14.134

    LIU Zhiliang, PAN Deng, ZUO Mingjian, et al. A review on fault diagnosis for rail vehicles[J]. Journal of Mechanical Engineering, 2016, 52(14): 134-146.doi:10.3901/JME.2016.14.134
    [2] 王曦,侯宇,孙守光,等. 高速列车轴承可靠性评估关键力学参量研究进展[J]. 力学学报,2021,53(1): 19-34.

    WANG Xi, HOU Yu, SUN Shouguang, et al. Advances in key mechanical parameters for reliability assessment of high-speed train bearings[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 19-34.
    [3] 张卫华,李权福,宋冬利. 关于铁路机车车辆健康管理与状态修的思考[J]. 中国机械工程,2021,32(4): 379-389.

    ZHANG Weihua, LI Quanfu, SONG Dongli. Thoughts on health management and condition-based maintenance of rolling stocks[J]. China Mechanical Engineering, 2021, 32(4): 379-389.
    [4] LEI Y G, LI N P, GUO L, et al. Machinery health prognostics: a systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing, 2018, 104: 799-834.doi:10.1016/j.ymssp.2017.11.016
    [5] 王志伟. 服役环境下高速列车齿轮及轴承系统动力学建模及耦合振动分析[D]. 成都: 江南娱乐网页版入口官网下载安装, 2019.
    [6] ANTONI J. Fast computation of the kurtogram for the detection of transient faults[J]. Mechanical Systems and Signal Processing, 2007, 21(1): 108-124.
    [7] SMITH W A, BORGHESANI P, NI Q, et al. Optimal demodulation-band selection for envelope-based diagnostics: a comparative study of traditional and novel tools[J]. Mechanical Systems and Signal Processing, 2019, 134: 106303.1-106303.24.
    [8] ANTONI J. Cyclic spectral analysis of rolling-element bearing signals: facts and fictions[J]. Journal of Sound and Vibration, 2007, 304(3/4/5): 497-529.
    [9] RANDALL R B, ANTONI J, CHOBSAARD S. The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals[J]. Mechanical Systems and Signal Processing, 2001, 15(5): 945-962.doi:10.1006/mssp.2001.1415
    [10] ANTONI J, XIN G, HAMZAOUI N. Fast computation of the spectral correlation[J]. Mechanical Systems and Signal Processing, 2017, 92: 248-277.doi:10.1016/j.ymssp.2017.01.011
    [11] WANG D, ZHAO X J, KOU L L, et al. A simple and fast guideline for generating enhanced/squared envelope spectra from spectral coherence for bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2019, 122: 754-768.doi:10.1016/j.ymssp.2018.12.055
    [12] MAURICIO A, SMITH W A, RANDALL R B, et al. Improved envelope spectrum via feature optimisation-gram (IESFOgram): a novel tool for rolling element bearing diagnostics under non-stationary operating conditions[J]. Mechanical Systems and Signal Processing, 2020, 144: 106891.1-106891.14.doi:10.1016/j.ymssp.2020.106891
    [13] CHEN B Y, CHENG Y, ZHANG W H, et al. Optimal frequency band selection using blind and targeted features for spectral coherence-based bearing diagnostics: a comparative study[J]. ISA Transactions, 2022, 127: 395-414.doi:10.1016/j.isatra.2021.08.025
    [14] MAURICIO A, GRYLLIAS K. Cyclostationary-based multiband envelope spectra extraction for bearing diagnostics: the combined improved envelope spectrum[J]. Mechanical Systems and Signal Processing, 2021, 149: 107150.1-107150.13.
    [15] ZHANG B Y, MIAO Y H, LIN J, et al. Weighted envelope spectrum based on the spectral coherence for bearing diagnosis[J]. ISA Transactions, 2022, 123: 398-412.doi:10.1016/j.isatra.2021.05.012
    [16] DUAN J, SHI T L, DUAN J, et al. A narrowband envelope spectra fusion method for fault diagnosis of rolling element bearings[J]. Measurement Science and Technology, 2018, 29(12): 125106.1-125106.16.
    [17] ANTONI J. The infogram: Entropic evidence of the signature of repetitive transients[J]. Mechanical Systems and Signal Processing, 2016, 74: 73-94.doi:10.1016/j.ymssp.2015.04.034
  • 加载中
图(16)/ 表(2)
计量
  • 文章访问数:738
  • HTML全文浏览量:263
  • PDF下载量:93
  • 被引次数:0
出版历程
  • 收稿日期:2022-01-15
  • 修回日期:2022-07-20
  • 网络出版日期:2022-12-12
  • 刊出日期:2022-08-29

目录

    /

      返回文章
      返回
        Baidu
        map