• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于响应面法的结构参数对引射器引射系数影响的仿真研究

贾德民,王晓艳,王培伦,于彬彬,徐煜,陈修旻,赵建辉

downloadPDF
贾德民, 王晓艳, 王培伦, 于彬彬, 徐煜, 陈修旻, 赵建辉. 基于响应面法的结构参数对引射器引射系数影响的仿真研究[J]. 江南娱乐网页版入口官网下载安装学报, 2024, 59(5): 1167-1175. doi: 10.3969/j.issn.0258-2724.20220232
引用本文: 贾德民, 王晓艳, 王培伦, 于彬彬, 徐煜, 陈修旻, 赵建辉. 基于响应面法的结构参数对引射器引射系数影响的仿真研究[J]. 江南娱乐网页版入口官网下载安装学报, 2024, 59(5): 1167-1175.doi:10.3969/j.issn.0258-2724.20220232
JIA Demin, WANG Xiaoyan, WANG Peilun, YU Binbin, XU Yu, CHEN Xiumin, ZHAO Jianhui. Simulation Study of Influence of Structural Parameters on Entrainment Coefficient of Ejector Based on Response Surface Method[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1167-1175. doi: 10.3969/j.issn.0258-2724.20220232
Citation: JIA Demin, WANG Xiaoyan, WANG Peilun, YU Binbin, XU Yu, CHEN Xiumin, ZHAO Jianhui. Simulation Study of Influence of Structural Parameters on Entrainment Coefficient of Ejector Based on Response Surface Method[J].Journal of Southwest Jiaotong University, 2024, 59(5): 1167-1175.doi:10.3969/j.issn.0258-2724.20220232

基于响应面法的结构参数对引射器引射系数影响的仿真研究

doi:10.3969/j.issn.0258-2724.20220232
基金项目:内燃机可靠性国家重点实验室开放基金(skler-202012)
详细信息
    作者简介:

    贾德民(1987 —),男,高级工程师,研究方向为内燃机先进技术,E-mail:690878234@qq.com

    通讯作者:

    赵建辉(1981—),男,教授,研究方向为柴油机燃料喷射技术,E-mail:zhao163.163@163.com

  • 中图分类号:TK401

Simulation Study of Influence of Structural Parameters on Entrainment Coefficient of Ejector Based on Response Surface Method

  • 摘要:

    为分析引射器引射系数的显著影响因素,建立以空气为介质的引射器二维可压缩流动数值模型,基于实验数据完成了引射器模型计算准确性的校核验证. 采用D最优实验设计方法设计计算矩阵,基于最小二乘法构建二阶形式的引射系数响应面预测模型,并基于响应面预测模型开展了引射系数显著参数及参数交互作用的仿真分析. 研究结果表明:引射系数预测值和计算值的吻合性证明了响应面预测模型的准确性;扩压段长度、混合段长度、混合段直径和喷嘴出口到混合段入口距离的交互、混合段直径和混合段长度的交互、混合段长度和扩压段扩散角的交互是引射器引射系数的关键影响因素,因其对引射系数影响的 P 值小于0.001;扩压段扩散角、喷嘴出口到混合段距离和扩压段长度的交互、混合段长度和喷嘴出口到混合段距离的交互对引射系数具有重要的影响,是引射系数影响的主要参数;在参数显著交互作用中,影响引射系数的显著因素是变化的,取决于显著交互作用双参数的取值范围.

  • 图 1亚音速引射器结构

    Figure 1.Structure of subsonic ejector

    图 2引射器流域网格

    Figure 2.Grid of flow domain in ejector

    图 3引射系数随网格数量的变化

    Figure 3.Variation of entrainment coefficient with the number of grids

    图 4模型计算结果与实验数据的对比

    Figure 4.Comparison between calculated values of the model and experimental data

    图 5引射系数的预测值与计算值对比

    Figure 5.Comparison between predicted values and calculated values of entrainment coefficient

    图 6μ、Gp、GsLs的变化

    Figure 6.Variation ofμ,Gp, andGswithLs

    图 7不同Ls下压力、流体速度分布云图

    Figure 7.Pressure and velocity distribution of the flow under differentLs

    图 8μ、Gp、GsLk的变化情况

    Figure 8.Variations ofμ,Gp, andGswithLk

    图 9不同Lk下压力、流体速度分布云图

    Figure 9.Pressure and velocity distribution of the flow under differentLs

    图 10μ、Gp、Gsθs的变化情况

    Figure 10.Variations ofμ,Gp, andGswithθs

    图 11不同θs下的速度分布

    Figure 11.Velocity distribution under differentθs

    图 12Lkdkμ的交互影响

    Figure 12.Effect of interaction betweenLkanddkonμ

    图 13Lcdkμ的交互影响

    Figure 13.Effect of interaction betweenLcanddkonμ

    图 14Lkθsμ的交互影响

    Figure 14.Effect of interaction betweenLkandθsonμ

    图 15LcLkμ的交互影响

    Figure 15.Effect of interaction betweenLcandLkonμ

    图 16LcLsμ的交互影响

    Figure 16.Effect of interaction betweenLcandLsonμ

    表 1引射器主要结构参数

    Table 1.Main structural parameters of the ejector

    参数 数值
    混合段直径dk/mm 44.1
    喷嘴出口到混合段入口距离Lc/mm 51
    混合段长度Lk/mm 265
    扩压段长度Ls/mm 315
    扩压段扩散角θs/(°) 8
    下载: 导出CSV

    表 2不同压力下引射器实验结果[8]Pc= 1100.1 kPa)

    Table 2.Experimental results of the ejector under different pressures[8]Pc= 1100.1 kPa)

    组别 Pp/kPa Ps/kPa Gp/(g·ms−1 Gs/(g·ms−1
    A1 300 85.1 130.7 40.2
    A2 300 90.0 130.8 176.3
    A3 300 95.0 130.9 272.1
    A4 300 97.5 130.9 337.9
    A5 301 99.9 130.8 389.0
    下载: 导出CSV

    表 3引射器结构参数的变化范围

    Table 3.Variation range of structural parameters of ejector

    参数 基准值 变化范围
    dk/mm 44.1 40.1~48.1
    Ls/mm 315 265~365
    Lk/mm 175 85~265
    θs/(°) 8 4~12
    Lc/mm 55 35~75
    下载: 导出CSV

    表 4引射器计算参数及引射系数

    Table 4.Calculation matrix and entrainment coefficient of ejector

    组别 dk/mm Ls/mm Lk/mm θs/(°) Lc/mm μ
    1 40.1 265 85 4 35 0.189558
    2 48.1 265 85 12 35 0.07164
    3 44.1 315 85 4 35 0.209247
    4 40.1 365 85 12 35 0.188561
    5 48.1 365 85 8 35 0.146944
    6 48.1 365 175 4 35 0.214265
    7 40.1 265 265 12 35 0.186404
    8 48.1 265 265 4 35 0.180986
    9 40.1 365 265 4 35 0.231475
    10 48.1 365 265 12 35 0.244793
    11 40.1 265 85 12 55 0.172385
    12 48.1 365 85 4 55 0.188328
    13 44.1 265 175 4 55 0.206013
    14 40.1 365 175 8 55 0.243177
    15 40.1 315 265 4 55 0.199469
    16 48.1 315 265 8 55 0.245310
    17 40.1 265 85 8 75 0.190808
    18 44.1 265 85 12 75 0.171817
    19 48.1 265 85 4 75 0.161238
    20 40.1 365 85 4 75 0.215495
    21 48.1 365 85 12 75 0.158560
    22 40.1 315 175 12 75 0.175558
    23 48.1 315 175 8 75 0.235737
    24 40.1 265 265 4 75 0.148970
    25 48.1 265 265 12 75 0.230014
    26 40.1 365 265 12 75 0.169519
    27 44.1 365 265 8 75 0.261608
    28 48.1 365 265 4 75 0.210122
    29 48.1 365 265 12 75 0.244963
    30 48.1 365 265 12 75 0.244963
    31 48.1 365 265 12 75 0.244963
    下载: 导出CSV

    表 5引射系数响应面模型的评价指标

    Table 5.Evaluation index of response surface model of entrainment coefficient

    组成项 P 组成项 P
    dk 0.0554 dkLs 0.6644
    Ls < 0.0001 dkLk < 0.0001
    Lk < 0.0001 dkθs 0.1199
    θs 0.0208 dkLc 0.0001
    Lc 0.8256 LsLk 0.8086
    $d_{\rm{k}}^2 $ 0.0008 Lsθs 0.2287
    $L_{\rm{s}}^2 $ 0.3913 LsLc 0.0128
    $L_{\rm{k}}^2 $ 0.0895 Lkθs 0.0002
    $\theta_{\rm{s}}^2 $ 0.0033 LkLc 0.0020
    $L_{\rm{c}}^2 $ 0.0693 θsLc 0.2378
    下载: 导出CSV
  • [1] FU W N, LIU Z L, LI Y X, et al. Numerical study for the influences of primary steam nozzle distance and mixing chamber throat diameter on steam ejector performance[J]. International Journal of Thermal Sciences, 2018, 132: 509-516.doi:10.1016/j.ijthermalsci.2018.06.033
    [2] SAMAKÉ O, GALANIS N, SORIN M. On the design and corresponding performance of steam jet ejectors[J]. Desalination, 2016, 381: 15-25.doi:10.1016/j.desal.2015.11.027
    [3] CHEN W X, CHONG D T, YAN J J, et al. The numerical analysis of the effect of geometrical factors on natural gas ejector performance[J]. Applied Thermal Engineering, 2013, 59(1/2): 21-29.
    [4] BANASIAK K, PALACZ M, HAFNER A, et al. A CFD-based investigation of the energy performance of two-phase R744 ejectors to recover the expansion work in refrigeration systems: an irreversibility analysis[J]. International Journal of Refrigeration, 2014, 40: 328-337.doi:10.1016/j.ijrefrig.2013.12.002
    [5] HAKKAKI-FARD A, AIDOUN Z, OUZZANE M. A computational methodology for ejector design and performance maximisation[J]. Energy Conversion and Management, 2015, 105: 1291-1302.doi:10.1016/j.enconman.2015.08.070
    [6] ZHU Y H, CAI W J, WEN C Y, et al. Numerical investigation of geometry parameters for design of high performance ejectors[J]. Applied Thermal Engineering, 2009, 29(5/6): 898-905.
    [7] CHONG D T, YAN J J, WU G S, et al. Structural optimization and experimental investigation of supersonic ejectors for boosting low pressure natural gas[J]. Applied Thermal Engineering, 2009, 29(14/15): 2799-2807.
    [8] NIKIFOROW K, KOSKI P, KARIMÄKI H, et al. Designing a hydrogen gas ejector for 5 kW stationary PEMFC system-CFD-modeling and experimental validation[J]. International Journal of Hydrogen Energy, 2016, 41(33): 14952-14970.doi:10.1016/j.ijhydene.2016.06.122
    [9] 王子瑞. 基于响应面法的贯流式水轮机多目标优化设计[D]. 西安: 西安理工大学, 2012.
    [10] OMIDVAR A, GHAZIKHANI M, MODARRES RAZAVI S M R. Entropy analysis of a solar-driven variable geometry ejector using computational fluid dynamics[J]. Energy Conversion and Management, 2016, 119: 435-443.doi:10.1016/j.enconman.2016.03.090
    [11] LI S Y, YAN J, LIU Z, et al. Optimization on crucial ejector geometries in a multi-evaporator refrigeration system for tropical region refrigerated trucks[J]. Energy, 2019, 189: 116347.1-116347.14.
    [12] BANASIAK K, HAFNER A, ANDRESEN T. Experimental and numerical investigation of the influence of the two-phase ejector geometry on the performance of the R744 heat pump[J]. International Journal of Refrigeration, 2012, 35(6): 1617-1625.doi:10.1016/j.ijrefrig.2012.04.012
    [13] SOLMAZ H, ARDEBILI S M S, CALAM A, et al. Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method[J]. Energy, 2021, 227: 1205181.1-1205181.13.
  • 加载中
图(16)/ 表(5)
计量
  • 文章访问数:447
  • HTML全文浏览量:402
  • PDF下载量:61
  • 被引次数:0
出版历程
  • 收稿日期:2022-04-19
  • 修回日期:2022-06-16
  • 网络出版日期:2023-11-18
  • 刊出日期:2022-07-13

目录

    /

      返回文章
      返回
        Baidu
        map