• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Turn off MathJax
Article Contents
WEI Kai, LIU Yanbin, WANG Xian, PU Qianhua. Theoretical Correction Method and Application of German-Standard Insertion Loss Rate of Vibration Damping Track[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240116
Citation: WEI Kai, LIU Yanbin, WANG Xian, PU Qianhua. Theoretical Correction Method and Application of German-Standard Insertion Loss Rate of Vibration Damping Track[J].Journal of Southwest Jiaotong University.doi:10.3969/j.issn.0258-2724.20240116

Theoretical Correction Method and Application of German-Standard Insertion Loss Rate of Vibration Damping Track

doi:10.3969/j.issn.0258-2724.20240116
  • Received Date:12 Mar 2024
  • Rev Recd Date:21 Jun 2024
  • Available Online:21 Apr 2025
  • To accurately and efficiently evaluate the vibration damping performance of tracks, the German standard DIN V 45673 -4 provides a method for efficiently calculating the insertion loss rate, which can eliminate interference from stochastic factors such as line operation conditions and track irregularities. However, this method neglects the contribution of track bending stiffness in its equivalent model, leading to errors in identifying the resonant frequency of the wheel-rail system and the vibration damping frequency band of tracks. To increase the calculation precision, the model for calculating the German-standard insertion loss rate was improved on the premise that the computational efficiency was maintained. By employing the elastic foundation beam theory to approximate the actual structural dimensions and stiffness characteristics of tracks and considering the contributions of elastic components and track bending stiffness, the stiffness of the model was corrected. The plans for optimizing track dimensions and vibration damping performance of elastic components were discussed in terms of the 1–80 Hz vibration damping frequency band required by China’s environmental impact assessment by taking the floating slab tracks with vibration damping pads for example. The results show that after stiffness correction, the error in the resonant frequency of the wheel-rail system is reduced from 76% to 4.9%. The increase in the fastener loss factor can achieve the overall vibration damping performance within the 1–80 Hz frequency band. However, within the range of 30–90 kN/mm for fastener stiffness, reducing (increasing) the fastener stiffness improves the insertion loss rate of the 60–80 Hz (30–60 Hz) frequency band and decreases the rate of the 30–60 Hz (60–80 Hz) frequency band. This does not meet the overall vibration damping performance for the 1–80 Hz frequency band which can only be achieved when the fastener stiffness exceeds 90 kN/mm. Furthermore, lower stiffness of vibration damping pads or thicker floating slabs indicate higher improvement in fastener stiffness.

  • loading
  • [1]
    刘维宁, 马蒙, 刘卫丰, 等. 我国城市轨道交通环境振动影响的研究现况[J]. 中国科学: 技术科学, 2016, 46(6): 547-559. doi:10.1360/N092015-00334

    LIU Weining, MA Meng, LIU Weifeng, et al. Overview on current research of environmental vibration influence induced by urban mass transit in China[J]. Scientia Sinica (Technologica), 2016, 46(6): 547-559. doi:10.1360/N092015-00334
    [2]
    王博, 赵俊娟, 卢伟健, 等. 轨道减振技术与应用[M]. 北京: 中国铁道出版社, 2023: 224-225.
    [3]
    杜林林, 刘维宁, 刘卫丰, 等. 城市轨道交通环境振动评价指标计算与分析[J]. 都市快轨交通, 2017, 30(5): 40-45. doi:10.3969/j.issn.1672-6073.2017.05.007

    DU Linlin, LIU Weining, LIU Weifeng, et al. Computation and analysis of evaluation indicators of environmental vibration induced by urban rail transit[J]. Urban Rapid Rail Transit, 2017, 30(5): 40-45. doi:10.3969/j.issn.1672-6073.2017.05.007
    [4]
    ZHAO L, ZHAO G T, YANG G T. Warping deformation of the track slab and their influence on the interlayer stiffness and vibration transmission characteristics of the unit ballastless track[J]. Structures, 2023, 10: 105078.1-105078.57.
    [5]
    韦凯, 王平. 铁路轨道高聚物弹性元件刚度设计方法与应用[M]. 北京: 科学出版社, 2023: 246, 315-319.
    [6]
    王文斌. 基于脉冲实验的地铁环境振动响应传递函数预测方法研究[D]. 北京: 北京交通大学, 2011.
    [7]
    LAGE Y E, NEVES M M, MAIA N M M, et al. Force transmissibility versus displacement transmissibility[J]. Journal of Sound Vibration, 2014, 333(22): 5708-5722. doi:10.1016/j.jsv.2014.05.038
    [8]
    DE-DIN. Mechanical vibration-Resilient elements used in railway tracks-part 4: analytical evaluation of insertion loss of mounted track systems: DIN V 45673-4[S]. Berlin: Deutsches Institut für Normung, 2008.
    [9]
    瞿思嫣. 基于等效弹性地基梁模型的钢轨动力分析方法研究[D]. 长沙: 中南大学, 2022: 19-21.
    [10]
    赵坪锐. 客运专线无碴轨道设计理论与方法研究[D]. 成都: 江南娱乐网页版入口官网下载安装, 2008.
    [11]
    VERACHTERT R, HUNT H E M, HUSSEIN M F M, et al. Changes of perceived unevenness caused by in-track vibration countermeasures in slab track[J]. European Journal of Mechanics, A/Solids, 2017, 65: 40-58. doi:10.1016/j.euromechsol.2017.02.003
    [12]
    何威, 左树行, 白象忠. 弹性地基双层梁理论下的混凝土路面力学分析[J]. 应用力学学报, 2020, 37(1): 63-69, 472-473.

    HE Wei, ZUO Shuhang, BAI Xiangzhong. Mechanical analysis of concrete pavement via the theory of double layer beams on elastic foundation[J]. Chinese Journal of Applied Mechanics, 2020, 37(1): 63-69, 472-473.
    [13]
    周越, 张国锋. 简谐波势能的一种简明推导[J]. 物理与工程, 2015, 25(2): 49-51. doi:10.3969/j.issn.1009-7104.2015.02.007

    ZHOU Yue, ZHANG Guofeng. A simplified derivation of potential energy of simple harmonic waves[J]. Physics and Engineering, 2015, 25(2): 49-51. doi:10.3969/j.issn.1009-7104.2015.02.007
    [14]
    韦凯, 豆银玲, 杨麒陆, 等. 钢弹簧浮置板轨道的随机振动分析及参数优化[J]. 华中科技大学学报(自然科学版), 2017, 45(8): 115-119.

    WEI Kai, DOU Yinling, YANG Qilu, et al. Random vibration analysis and parameter optimization of steel-spring floating-slab track[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(8): 115-119.
    [15]
    龙驭球. 弹性地基梁的计算[M]. 北京: 人民教育出版社, 1981.
    [16]
    关庆华, 周业明, 李伟, 等. 车辆轨道系统的P2共振频率研究[J]. 机械工程学报, 2019, 55(8): 118-127. doi:10.3901/JME.2019.08.118

    GUAN Qinghua, ZHOU Yeming, LI Wei, et al. Study on the P2 resonance frequency of vehicle track system[J]. Journal of Mechanical Engineering, 2019, 55(8): 118-127. doi:10.3901/JME.2019.08.118
    [17]
    马维国, 关庆华, 钟文生, 等. 轨道参数对轮轨耦合系统固有频率的影响[J]. 噪声与振动控制, 2019, 39(3): 18-23, 55. doi:10.3969/j.issn.1006-1355.2019.03.004

    MA Weiguo, GUAN Qinghua, ZHONG Wensheng, et al. Influence of track parameters on natural frequencies of wheel-track coupling systems[J]. Noise and Vibration Control, 2019, 39(3): 18-23, 55. doi:10.3969/j.issn.1006-1355.2019.03.004
    [18]
    马超智, 高亮, 曾钦娥, 等. 高速铁路轮轨耦合振动模态特征及其影响因素研究[J]. 铁道学报, 2021, 43(12): 85-93. doi:10.3969/j.issn.1001-8360.2021.12.011

    MA Chaozhi, GAO Liang, ZENG Qine, et al. Study on modal characteristics and influencing factors of wheel-rail coupling vibration of high-speed railway[J]. Journal of the China Railway Society, 2021, 43(12): 85-93. doi:10.3969/j.issn.1001-8360.2021.12.011
    [19]
    易思蓉. 铁道工程[M]. 3版. 北京: 中国铁道出版社, 2015: 240-243.
    [20]
    国家质量监督检验检疫总局, 中国国家标准化管理委员会. 机械振动与冲击, 人体暴露于全身振动的评价 第1部分: 一般要求: GB/T 13441.1—2007[S]. 北京: 中国标准出版社, 2007.
    [21]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 机械振动与冲击, 人体暴露于全身振动的评价 第2部分: 建筑物内的振动: GB/T 13441.1—2008[S]. 北京: 中国标准出版社, 2008.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)/Tables(6)

    Article views(149) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    Return
    Return
      Baidu
      map