Currently, most Min-Zhe timber arch lounge bridges suffer from the lack of detailed blueprint documentation, leading to unsatisfactory preservation effects and insufficient research on fire spread patterns and disaster prevention. To solve these problems, a digital reconstruction technology based on three-dimensional scanning and BIM parameterization was proposed to construct the digital twins of timber arch lounge bridges, and a BIM-fire dynamics simulator (FDS) was used to analyze the fire spread patterns and fire prevention strategies of such bridges. Firstly, the original point cloud model of Helong Bridge was obtained through on-site three-dimensional scanning, and after registration, denoising, and thinning processes, a BIM parametric digital twin was established to calculate its fire load density. Secondly, the IFC format was adopted to realize the interaction between BIM and FDS, and the fire digital twin of the timber arch lounge bridge was established. Simulation analysis was conducted through parameters such as heat release rate (HRR), fire spread phenomenon, visibility, temperature, and harmful gas concentration, and the fire spread patterns were derived by simulating and analyzing multiple typical fire source scenarios in FDS. Finally, fire prevention optimization strategies such as material flame-retardant treatment, bridge deck non-combustible transformation, and sprinkler system layout were discussed. The research results indicate that the fire load density of the timber arch lounge bridge is as high as 4 017.764 MJ/m2, far exceeding that of typical Chinese and foreign buildings, thus posing an extremely high fire risk. Among multiple typical fire source scenarios, excluding HRR mutation values, the HRR peaks of the arch structure and bridge bottom working conditions are stable at 100 MW and 95 MW, respectively. The HRR peaks of the bridge center and bridge head working conditions are stable at 88 MW and 70 MW, respectively. The HRR of the bridge side bottom and bridge top working conditions does not reach the peak within 1 000 seconds, with maximum values of 55 MW and 22 MW. Therefore, the fire risk of ignition under the bridge is the highest, followed by ignition on the bridge deck, while the fire risks of roof ignition and ignition at the bridge side bottom are relatively low. Through fire simulation and quantitative analysis of multiple fire parameters, it is confirmed that the three fire prevention measures can delay the fire spread of timber arch lounge bridges, and the upper and lower fire compartments, wood flame retardancy, and sprinkler systems reduce the HRR peak by 23 MW, 39 MW, and 63 MW, respectively. The research results can serve as the basis for information storage, quantitative analysis of fire spread, and preventive protection of timber arch lounge bridges and provide technical support for the long-term safe operation and maintenance of cultural heritage buildings.