| Citation: | HUANG Hongying, LUO Yi, GUAN Huisheng, MA Haicheng. Conveying Efficiency Analysis of Vacuum Pneumatic Slagging of Shaft Boring Machine[J].Journal of Southwest Jiaotong University.doi:10.3969/j.issn.0258-2724.20240255 |
For the purpose of improving the conveying efficiency of the vacuum pneumatic slagging system of the shaft boring machine (SBM) and addressing low conveying efficiency caused by the mismatch between the parameters of the slagging system and the rock slag, the effect of conveying system parameters on slagging efficiency was investigated based on single factor analysis method and orthogonal test method. Firstly, a parameter and pressure loss calculation model for the vacuum pneumatic slagging system was constructed based on fluid mechanics to determine the key parameters of the system. Then, the Fluent software was used to simulate the process of vacuum pneumatic slagging, and the outlet velocity of rock slag and the average gas pressure drop were taken as the consideration index of slag conveying efficiency. The single factor analysis method was used to study the influence of four factors, including inner diameter of pipe, gas velocity, rock slag particle size, and rock slag density, on the conveying efficiency. The multi-factor analysis was carried out based on the orthogonal test method, and the non-dominated sorting genetic algorithm was applied to obtain the Pareto frontier solution set. Finally, the slag conveying efficiency test of the vacuum pneumatic slagging system was carried out. The results show that the influence of gas velocity and rock slag particle size on the outlet velocity of rock slag is the most significant, and the influence of inner diameter of pipe and gas velocity on the average gas pressure drop is the most significant. In addition, the average gas pressure drop and the outlet velocity of rock slag cannot reach the optimum simultaneously. When the minimum value of the outlet velocity of rock slag is selected as the best economic conveying point, the optimal combination of conveying parameters is as follows: rock slag particle size of 10 mm, inner diameter of pipe of 150 mm, gas velocity of 40 m/s. The research results can provide a reference for the construction application of the vacuum pneumatic slagging system of SBM.

| [1] |
刘志强. 竖井掘进机[M]. 北京: 煤炭工业出版社, 2019.
|
| [2] |
黄鸿颖, 管会生, 母国旺, 等. 竖井全断面掘进机异型刀盘的滚刀布局[J]. 江南娱乐网页版入口官网下载安装学报, 2025, 60(3): 704-713, 730.
HUANG Hongying, GUAN Huisheng, MU Guowang, et al. Cutter layout on special-shaped cutterhead for shaft boring machine[J]. Journal of Southwest Jiaotong University, 2025, 60(3): 704-713, 730.
|
| [3] |
贾连辉, 吕旦, 郑康泰, 等. 全断面竖井掘进机上排渣关键技术研究与试验[J]. 隧道建设(中英文), 2020, 40(11): 1657-1663.
JIA Lianhui, LYU Dan, ZHENG Kangtai, et al. Research and test on vertical discharge of full-face shaft boring machine[J]. Tunnel Construction, 2020, 40(11): 1657-1663.
|
| [4] |
周云, 陈晓平, 梁财, 等. 不同平均粒径煤粉的高压密相气力输送[J]. 动力工程, 2009, 29(3): 218-222.
ZHOU Yun, CHEN Xiaoping, LIANG Cai, et al. Dense-phase pneumatic conveying for pulverized coal with different mean particle size under high pressure[J]. Journal of Power Engineering, 2009, 29(3): 218-222.
|
| [5] |
ZHOU H J, XIONG Y Q, PEI Y. Effect of moisture content on dense-phase pneumatic conveying of pulverized lignite under high pressure[J]. Powder Technology, 2016, 287: 355-363.
doi:10.1016/j.powtec.2015.10.026
|
| [6] |
GUAN Q L, LIU Z, FANG X H, et al. Experimental study on dense-phase pneumatic conveying of coal powder at high pressures[J]. Clean Energy, 2017, 1(1): 50-67.
doi:10.1093/ce/zkx007
|
| [7] |
SANTO N, PORTNIKOV D, TRIPATHI N M, et al. Experimental study on the particle velocity development profile and acceleration length in horizontal dilute phase pneumatic conveying systems[J]. Powder Technology, 2018, 339: 368-376.
doi:10.1016/j.powtec.2018.07.074
|
| [8] |
SANTO N, PORTNIKOV D, ESHEL I, et al. Experimental study on particle steady state velocity distribution in horizontal dilute phase pneumatic conveying[J]. Chemical Engineering Science, 2018, 187: 354-366.
doi:10.1016/j.ces.2018.04.058
|
| [9] |
ZHOU J W, SHANGGUAN L J, GAO K D, et al. Numerical study of slug characteristics for coarse particle dense phase pneumatic conveying[J]. Powder Technology, 2021, 392: 438-447.
doi:10.1016/j.powtec.2021.07.024
|
| [10] |
周甲伟, 上官林建, 许兰贵, 等. 粗重颗粒轻介共流气力输送机理及特性[J]. 机械工程学报, 2022, 58(14): 308-319.
doi:10.3901/JME.2022.14.308
ZHOU Jiawei, SHANGGUAN Linjian, XU Langui, et al. Mechanism and characteristics of light medium mixed flow pneumatic conveying for coarse particle[J]. Journal of Mechanical Engineering, 2022, 58(14): 308-319.
doi:10.3901/JME.2022.14.308
|
| [11] |
周锋. 煤炭大颗粒气力输送关键技术研究[D]. 徐州: 中国矿业大学, 2022.
|
| [12] |
蔡海峰, 熊源泉, 周海军. 水平弯管高压密相气力输送数值模拟[J]. 东南大学学报(自然科学版), 2019, 49(1): 154-163.
CAI Haifeng, XIONG Yuanquan, ZHOU Haijun. Numerical simulation on dense phase pneumatic conveying under high pressure in horizontal bend[J]. Journal of Southeast University (Natural Science Edition), 2019, 49(1): 154-163.
|
| [13] |
杨辉. 气力输送计算机设计计算系统的研制与开发[D]. 杭州: 浙江大学, 2004.
|
| [14] |
王云强. 烟草行业负压吸送式气力输送装置(系统)的设计计算[J]. 机械工程师, 2018(1): 77-79, 83.
WANG Yunqiang. Design and calculation of negative-pressure pneumatic transporting device (system) for tobacco industry[J]. Mechanical Engineer, 2018(1): 77-79,83.
|
| [15] |
杨伦, 谢一华. 气力输送工程[M]. 北京: 机械工业出版社, 2006.
|
| [16] |
姜棚仁. 散粮管道气力输送多相流场特性研究[D]. 郑州: 河南工业大学, 2023.
|
| [17] |
吴建章, 李东森. 通风除尘与气力输送[M]. 北京: 中国轻工业出版社, 2009.
|
| [18] |
程克勤, 陈宏勋. 气力输送装置[M]. 北京: 机械工业出版社, 1993.
|
| [19] |
李朝弟, 周磊, 周树光, 等. 弃料煤样真空气力输送系统的设计及应用[J]. 煤质技术, 2019, 34(6): 39-43, 51.
LI Zhaodi, ZHOU Lei, ZHOU Shuguang, et al. Design and application of vacuum pneumatic conveying system for discarded coal samples[J]. Coal Quality Technology, 2019, 34(6): 39-43, 51.
|
| [20] |
张则强, 汪开普, 朱立夏, 等. 多目标U型拆卸线平衡问题的Pareto蚁群遗传算法[J]. 江南娱乐网页版入口官网下载安装学报, 2018, 53(3): 628-637, 660.
ZHANG Zeqiang, WANG Kaipu, ZHU Lixia, et al. Pareto hybrid ant colony and genetic algorithm for multi-objective U-shaped disassembly line balancing problem[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 628-637, 660.
|
| [21] |
谢灼利, 黎明, 张政. 水平管气力输送的数值模拟研究[J]. 高校化学工程学报, 2006, 20(3): 331-337.
XIE Zhuoli, LI Ming, ZHANG Zheng. Numerical simulation of horizontal pneumatic conveying[J]. Journal of Chemical Engineering of Chinese Universities, 2006, 20(3): 331-337.
|