• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Turn off MathJax
Article Contents
ZHOU Zhongyi, ZHAO Hongsheng, LIU Yan, CHEN Jianwei, ZHANG Wenming, HONG Yani. Self-Sensing Performance of Ultra-High Performance Fiber-Reinforced Concrete Under Cyclic Loading[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240649
Citation: ZHOU Zhongyi, ZHAO Hongsheng, LIU Yan, CHEN Jianwei, ZHANG Wenming, HONG Yani. Self-Sensing Performance of Ultra-High Performance Fiber-Reinforced Concrete Under Cyclic Loading[J].Journal of Southwest Jiaotong University.doi:10.3969/j.issn.0258-2724.20240649

Self-Sensing Performance of Ultra-High Performance Fiber-Reinforced Concrete Under Cyclic Loading

doi:10.3969/j.issn.0258-2724.20240649
  • Received Date:08 Dec 2024
  • Rev Recd Date:08 Apr 2025
  • Available Online:05 Aug 2025
  • To study the self-sensing performance of ultra-high performance concrete (UHPC) mixed with steel fibers and multi-walled carbon nanotubes (MWCNTs) under different cyclic stress amplitudes, experimental studies were conducted on UHPC specimens with a steel fiber volume content of 2% and varying MWCNT contents. The results show that the initial resistivity of UHPC increases first and then decreases with the increase in MWCNT content, and the addition of 0.15% MWCNTs improves the conductivity of UHPC. When the MWCNT content is 0.15%, the sample exhibits optimal repeatability, with a repeatability coefficient of 0.019, and the linearity change of alternating current (AC) resistance presents a strong linear relationship with stress, with a linearity of 0.97. The stress sensitivity and strain sensitivity of the samples UHPC0 and UHPC0.05 first increase and then decrease with the increase in stress, while the stress sensitivity and strain sensitivity of samples UHPC0.1 and UHPC0.15 show a gradually decreasing trend. The maximum strain sensitivity and stress sensitivity of UHPC0.15 are 71.6% and 0.16%/MPa under different cyclic stress amplitudes, both appearing at a stress of 10 MPa. When the content of MWCNTs is 0.15%, UHPC exhibits the best self-sensing performance.

  • loading
  • [1]
    YOO D Y, BANTHIA N. Mechanical properties of ultra-high-performance fiber-reinforced concrete: a review[J]. Cement and Concrete Composites, 2016, 73: 267-280. doi:10.1016/j.cemconcomp.2016.08.001
    [2]
    HE B, ZHU X P, REN Q, et al. Effects of fibers on flexural strength of ultra-high-performance concrete subjected to cryogenic attack[J]. Construction and Building Materials, 2020, 265: 120323.1-120323.8.
    [3]
    GOMAA E, GHENI A, ELGAWADY M A. Repair of ordinary Portland cement concrete using ambient-cured alkali-activated concrete: interfacial behavior[J]. Cement and Concrete Research, 2020, 129: 105968.1-105968.17.
    [4]
    WANG Y S, PENG K D, ALREFAEI Y, et al. The bond between geopolymer repair mortars and OPC concrete substrate: Strength and microscopic interactions[J]. Cement and Concrete Composites, 2021, 119: 103991.1-103991.12.
    [5]
    TAYEH B A, ABU BAKAR B H, MEGAT JOHARI M A, et al. Utilization of ultra-high performance fibre concrete (UHPFC) for rehabilitation—a review[J]. Procedia Engineering, 2013, 54: 525-538. doi:10.1016/j.proeng.2013.03.048
    [6]
    TAHERI S. A review on five key sensors for monitoring of concrete structures[J]. Construction and Building Materials, 2019, 204: 492-509. doi:10.1016/j.conbuildmat.2019.01.172
    [7]
    BAE Y, PYO S. Effect of steel fiber content on structural and electrical properties of ultra high performance concrete (UHPC) sleepers[J]. Engineering Structures, 2020, 222: 111131. doi:10.1016/j.engstruct.2020.111131
    [8]
    YOO D Y, YOON Y S. A review on structural behavior, design, and application of ultra-high-performance fiber-reinforced concrete[J]. International Journal of Concrete Structures and Materials, 2016, 10(2): 125-142. doi:10.1007/s40069-016-0143-x
    [9]
    YOO D Y, KIM S, LEE S H. Self-sensing capability of ultra-high-performance concrete containing steel fibers and carbon nanotubes under tension[J]. Sensors and Actuators A: Physical, 2018, 276: 125-136. doi:10.1016/j.sna.2018.04.009
    [10]
    SUN M Q, LIEW R J Y, ZHANG M H, et al. Development of cement-based strain sensor for health monitoring of ultra high strength concrete[J]. Construction and Building Materials, 2014, 65: 630-637. doi:10.1016/j.conbuildmat.2014.04.105
    [11]
    DONG S F, HAN B G, OU J P, et al. Electrically conductive behaviors and mechanisms of short-cut super-fine stainless wire reinforced reactive powder concrete[J]. Cement and Concrete Composites, 2016, 72: 48-65. doi:10.1016/j.cemconcomp.2016.05.022
    [12]
    KIM M K, KIM D J, AN Y K. Electro-mechanical self-sensing response of ultra-high-performance fiber-reinforced concrete in tension[J]. Composites Part B: Engineering, 2018, 134: 254-264. doi:10.1016/j.compositesb.2017.09.061
    [13]
    YOU I, YOO D Y, KIM S, et al. Electrical and self-sensing properties of ultra-high-performance fiber-reinforced concrete with carbon nanotubes[J]. Sensors, 2017, 17(11): 2481.1-2481.19.
    [14]
    LEE S H, KIM S, YOO D Y. Hybrid effects of steel fiber and carbon nanotube on self-sensing capability of ultra-high-performance concrete[J]. Construction and Building Materials, 2018, 185: 530-544. doi:10.1016/j.conbuildmat.2018.07.071
    [15]
    DONG S F, DONG X F, ASHOUR A, et al. Fracture and self-sensing characteristics of super-fine stainless wire reinforced reactive powder concrete[J]. Cement and Concrete Composites, 2020, 105: 103427.1-103427.15.
    [16]
    SONG F C, CHEN Q, ZHENG Q M. Multifunctional ultra-high performance fibre-reinforced concrete with integrated self-sensing and repair capabilities towards in situstructure monitoring[J]. Composite Structures, 2023, 321: 117240.1-117240.17.
    [17]
    SONG F C, CHEN Q, JIANG Z W, et al. Piezoresistive properties of ultra-high-performance fiber-reinforced concrete incorporating few-layer graphene[J]. Construction and Building Materials, 2021, 305: 124362.1-124362.14.
    [18]
    LE H V, KIM M K, KIM S U, et al. Enhancing self-stress sensing ability of smart ultra-high performance concretes under compression by using nano functional fillers[J]. Journal of Building Engineering, 2021, 44: 102717.1-102717.14.
    [19]
    ASTM International. Standard test method for flow of hydraulic cement mortar: ASTM C1437[S]. West Conshohocken: ASTM International, 2015.
    [20]
    ASTM International. Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens): ASTM C109/C109M-21[S]. West Conshohocken: ASTM International, 2021.
    [21]
    AZHARI F, BANTHIA N. Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing[J]. Cement and Concrete Composites, 2012, 34(7): 866-873. doi:10.1016/j.cemconcomp.2012.04.007
    [22]
    PELED A, T ORRENTSJ M, MASON T, et al. Electrical impedance spectra to monitor damage during tensile loading of cement composites[J]. ACI Materials Journal, 2001, 98(4): 313-322.
    [23]
    DEMIREL B, YAZICIOĞLU S, ORHAN N. Electrical behaviour of carbon fibre-reinforced concrete with increasing loading in varying and constant frequencies[J]. Magazine of Concrete Research, 2006, 58(10): 691-697. doi:10.1680/macr.2006.58.10.691
    [24]
    HAN B G, YU X, KWON E, et al. Effects of CNT concentration level and water/cement ratio on the piezoresistivity of CNT/cement composites[J]. Journal of Composite Materials, 2012, 46(1): 19-25. doi:10.1177/0021998311401114
    [25]
    TEOMETE E, KOCYIGIT O I. Tensile strain sensitivity of steel fiber reinforced cement matrix composites tested by split tensile test[J]. Construction and Building Materials, 2013, 47: 962-968. doi:10.1016/j.conbuildmat.2013.05.095
    [26]
    CHEN P W, CHUNG D D L. Carbon fiber reinforced concrete for smart structures capable of non-destructive flaw detection[J]. Smart Materials and Structures, 1993, 2(1): 22-30. doi:10.1088/0964-1726/2/1/004
    [27]
    HAN B G, GUAN X C, OU J P. Electrode design, measuring method and data acquisition system of carbon fiber cement paste piezoresistive sensors[J]. Sensors and Actuators A: Physical, 2007, 135(2): 360-369. doi:10.1016/j.sna.2006.08.003
    [28]
    罗健林. 碳纳米管水泥基复合材料制备及功能性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.
    [29]
    CHUNG D D L, WANG Y L. Capacitance-based stress self-sensing in cement paste without requiring any admixture[J]. Cement and Concrete Composites, 2018, 94: 255-263. doi:10.1016/j.cemconcomp.2018.09.017
    [30]
    MCCARTER W J, BROUSSEAU R. The A. C. response of hardened cement paste[J]. Cement and Concrete Research, 1990, 20(6): 891-900. doi:10.1016/0008-8846(90)90051-X
    [31]
    KIM M K, LE H V, KIM D J. Electromechanical response of smart ultra-high performance concrete under external loads corresponding to different electrical measurements[J]. Sensors, 2021, 21(4): 1281.1-1281.18.
    [32]
    LEE S Y, LE H V, KIM D J. Self-stress sensing smart concrete containing fine steel slag aggregates and steel fibers under high compressive stress[J]. Construction and Building Materials, 2019, 220: 149-160. doi:10.1016/j.conbuildmat.2019.05.197
    [33]
    LE H V, LEE D H, KIM D J. Effects of steel slag aggregate size and content on piezoresistive responses of smart ultra-high-performance fiber-reinforced concretes[J]. Sensors and Actuators A: Physical, 2020, 305: 111925.1-111925.14.
    [34]
    LE H V, KIM M K, KIM D J, et al. Electrical properties of smart ultra-high performance concrete under various temperatures, humidities, and age of concrete[J]. Cement and Concrete Composites, 2021, 118: 103979.1-103979.14.
    [35]
    SHI K R, CHUNG D D L. Piezoelectricity-based self-sensing of compressive and flexural stress in cement-based materials without admixture requirement and without poling[J]. Smart Materials and Structures, 2018, 27(10): 105011.1-105011.21.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)/Tables(5)

    Article views(41) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    Return
    Return
      Baidu
      map