| Citation: | WANG Yichao, WU Pingfei, YU Jiangtao, ZHANG Yao, XIE Xingxing. Dynamic Tensile Properties of Ultra-High Ductile Concrete Under Different Strain Rates[J].Journal of Southwest Jiaotong University.doi:10.3969/j.issn.0258-2724.20240264 |
Ultra-high ductile concrete (UHDC) has excellent strain hardening and multi-cracking characteristics, and it has great potential in impact load resistance. Direct tensile tests were conducted under 11 strain rates (0.000 1–

| [1] |
宁建国, 宋卫东, 任会兰, 等. 冲击载荷作用下材料与结构的响应与防护[J]. 固体力学学报, 2010, 31(5): 532-552.
NING Jianguo, SONG Weidong, REN Huilan, et al. Response and protection of materials and structures under impact loadings[J]. Chinese Journal of Solid Mechanics, 2010, 31(5): 532-552.
|
| [2] |
李新忠, 魏雪英, 赵均海. 混凝土力学性能的应变率效应[J]. 长安大学学报(自然科学版), 2012, 32(2): 82-86.
LI Xinzhong, WEI Xueying, ZHAO Junhai. Strain rate effect on mechanical properties of concrete[J]. Journal of Chang’an University (Natural Science Edition), 2012, 32(2): 82-86.
|
| [3] |
YOO D Y, BANTHIA N. Impact resistance of fiber-reinforced concrete: a review[J]. Cement and Concrete Composites, 2019, 104: 103389.
doi:10.1016/j.cemconcomp.2019.103389
|
| [4] |
赵昕. 超高韧性水泥基复合材料动态力学性能试验与理论研究[D]. 杭州: 浙江大学, 2018.
|
| [5] |
YU K Q, WANG Y C, YU J T, et al. A strain-hardening cementitious composites with the tensile capacity up to 8%[J]. Construction and Building Materials, 2017, 137: 410-419.
doi:10.1016/j.conbuildmat.2017.01.060
|
| [6] |
DING Y, YU J T, YU K Q, et al. Basic mechanical properties of ultra-high ductility cementitious composites: from 40 MPa to 120 MPa[J]. Composite Structures, 2018, 185: 634-645.
doi:10.1016/j.compstruct.2017.11.034
|
| [7] |
王义超, 侯梦君, 余江滔, 等. 聚乙烯纤维制备超高延性水泥基复合材料的试验研究[J]. 材料导报, 2018, 32(20): 3535-3540.
WANG Yichao, HOU Mengjun, YU Jiangtao, et al. Experimental study on mechanical properties of ultra-high ductile cementitious composites[J]. Materials Review, 2018, 32(20): 3535-3540.
|
| [8] |
董伟, 泽里罗布, 银英姿, 等. 玄武岩纤维风积沙混凝土单轴受压应力-应变试验研究[J]. 江南娱乐网页版入口官网下载安装学报, 2026, 61(1): 67-75.
DONG Wei, ZELI Luobu, YIN Yingzi, et al. Experimental study onuniaxial compressive stress–strain of basalt fiber aeolian sand concrete[J]. Journal of Southwest Jiaotong University, 2026, 61(1): 67-75.
|
| [9] |
CUROSU I, MECHTCHERINE V, MILLON O. Effect of fiber properties and matrix composition on the tensile behavior of strain-hardening cement-based composites (SHCCs) subject to impact loading[J]. Cement and Concrete Research, 2016, 82: 23-35.
doi:10.1016/j.cemconres.2015.12.008
|
| [10] |
WANG Y C, LIU F C, YU J T, et al. Effect of polyethylene fiber content on physical and mechanical properties of engineered cementitious composites[J]. Construction and Building Materials, 2020, 251: 118917.
doi:10.1016/j.conbuildmat.2020.118917
|
| [11] |
YU K Q, DAI J G, LU Z D, et al. Rate-dependent tensile properties of ultra-high performance engineered cementitious composites (UHP-ECC)[J]. Cement and Concrete Composites, 2018, 93: 218-234.
doi:10.1016/j.cemconcomp.2018.07.016
|
| [12] |
LI H D, XU S L. Rate dependence of ultra high toughness cementitious composite under direct tension[J]. Journal of Zhejiang University: Science A, 2016, 17(6): 417-426.
doi:10.1631/jzus.A1600031
|
| [13] |
王小娟, 崔浩儒, 周宏元, 等. 玄武岩纤维增强泡沫混凝土的单轴拉伸及准静态压缩性能[J]. 复合材料学报, 2023, 40(3): 1569-1585.
WANG Xiaojuan, CUI Haoru, ZHOU Hongyuan, et al. Mechanical performance of basalt fiber reinforced foam concrete subjected to quasi-static tensile and compressive tests[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1569-1585.
|
| [14] |
YANG E H, LI V C. Strain-rate effects on the tensile behavior of strain-hardening cementitious composites[J]. Construction and Building Materials, 2014, 52: 96-104.
doi:10.1016/j.conbuildmat.2013.11.013
|
| [15] |
RANADE R, LI V C, HEARD W F. Tensile rate effects in high strength-high ductility concrete[J]. Cement and Concrete Research, 2015, 68: 94-104.
doi:10.1016/j.cemconres.2014.11.005
|
| [16] |
KANDA T, LI V C. Multiple cracking sequence and saturation in fiber reinforced cementitious composites[J]. Concrete Research and Technology, 1998, 9(2): 19-33.
doi:10.3151/crt1990.9.2_19
|
| [17] |
MECHTCHERINE V, DE ANDRADE SILVA F, BUTLER M, et al. Behaviour of strain-hardening cement-based composites under high strain rates[J]. Journal of Advanced Concrete Technology, 2011, 9(1): 51-62.
doi:10.3151/jact.9.51
|
| [18] |
BOSHOFF W P, VAN ZIJL G P A G. Time-dependent response of ECC: characterisation of creep and rate dependence[J]. Cement and Concrete Research, 2007, 37(5): 725-734.
doi:10.1016/j.cemconres.2007.02.001
|
| [19] |
PYO S, WILLE K, EL-TAWIL S, et al. Strain rate dependent properties of ultra high performance fiber reinforced concrete (UHP-FRC) under tension[J]. Cement and Concrete Composites, 2015, 56: 15-24.
doi:10.1016/j.cemconcomp.2014.10.002
|
| [20] |
Japan Society of Civil Engineers. Recommendations for design and construction of high performance fiber reinforced cement composite with multiple fine cracks (HPFRCC)[S]. [S.l.]: Japan Society of Civil Engineers, 2007.
|
| [21] |
GHIASSI B, XAVIER J, OLIVEIRA D V, et al. Application of digital image correlation in investigating the bond between FRP and masonry[J]. Composite Structures, 2013, 106: 340-349.
doi:10.1016/j.compstruct.2013.06.024
|
| [22] |
KUMAR S L, ARAVIND H B, HOSSINEY N. Digital image correlation (DIC) for measuring strain in brick masonry specimen using Ncorr open source 2D MATLAB program[J]. Results in Engineering, 2019, 4: 100061.
doi:10.1016/j.rineng.2019.100061
|
| [23] |
WEEKS C A, SUN C T. Modeling non-linear rate-dependent behavior in fiber-reinforced composites[J]. Composites Science and Technology, 1998, 58(3/4): 603-611.
|
| [24] |
YANG E H, LI V C. Tailoring engineered cementitious composites for impact resistance[J]. Cement and Concrete Research, 2012, 42(8): 1066-1071.
doi:10.1016/j.cemconres.2012.04.006
|
| [25] |
NOH H W, TRUONG V D, CHO J Y, et al. Dynamic increase factors for fiber-reinforced cement composites: a review[J]. Journal of Building Engineering, 2022, 56: 104769.
doi:10.1016/j.jobe.2022.104769
|
| [26] |
PARK J K, KIM S W, KIM D J. Matrix-strength-dependent strain-rate sensitivity of strain-hardening fiber-reinforced cementitious composites under tensile impact[J]. Composite Structures, 2017, 162: 313-324.
doi:10.1016/j.compstruct.2016.12.022
|
| [27] |
CEB. Concrete structures under impact and impulsive loading: synthesis report: Bulletin d’information No. 187[S]. Lausanne: Comité Euro-International du Béton, 1988.
|
| [28] |
MALVAR L J, ROSS C A. Review of strain rate effects for concrete in tension[J]. ACI Materials Journal, 1998, 95(6): 735-739.
|
| [29] |
ROSS C A, JEROME D M, TEDESCO J W, et al. Moisture and strain rate effects on concrete strength[J]. ACI Materials Journal, 1996, 93(3): 293-300.
|