• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Turn off MathJax
Article Contents
WANG Yichao, WU Pingfei, YU Jiangtao, ZHANG Yao, XIE Xingxing. Dynamic Tensile Properties of Ultra-High Ductile Concrete Under Different Strain Rates[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240264
Citation: WANG Yichao, WU Pingfei, YU Jiangtao, ZHANG Yao, XIE Xingxing. Dynamic Tensile Properties of Ultra-High Ductile Concrete Under Different Strain Rates[J].Journal of Southwest Jiaotong University.doi:10.3969/j.issn.0258-2724.20240264

Dynamic Tensile Properties of Ultra-High Ductile Concrete Under Different Strain Rates

doi:10.3969/j.issn.0258-2724.20240264
  • Received Date:31 May 2024
  • Rev Recd Date:05 Nov 2024
  • Available Online:21 Oct 2025
  • Ultra-high ductile concrete (UHDC) has excellent strain hardening and multi-cracking characteristics, and it has great potential in impact load resistance. Direct tensile tests were conducted under 11 strain rates (0.000 1– 189.0700 s−1) ranging from quasi-static to impact states to investigate the strain rate effect on the tensile properties of UHDC. The influence of strain rate on the shape of the tensile stress–strain curves, cracking pattern, and tensile performance indicators of UHDC was analyzed. The expression of the dynamic increase factor of tensile performance indicators regarding strain rate was established. In addition, the influence of the tensile rate on the fiber–matrix interface bonding performance was analyzed to further explain the strain rate effect on the tensile properties of UHDC. The results show that the deformation capacity of UHDC decreases with the increase in strain rate. When the strain rate is 102.000 0 s−1, UHDC still has significant strain hardening and multi-cracking pattern capacity, with the tensile strain capacity up to 4%. The average crack width, which keeps a constant value of 100 μm, does not vary with the strain rate change, exhibiting the excellent crack control capacity of UHDC. The relationship curves between the dynamic increase factor of the tensile performance indicators and strain rate show a clear two-stage characteristic.

  • loading
  • [1]
    宁建国, 宋卫东, 任会兰, 等. 冲击载荷作用下材料与结构的响应与防护[J]. 固体力学学报, 2010, 31(5): 532-552.

    NING Jianguo, SONG Weidong, REN Huilan, et al. Response and protection of materials and structures under impact loadings[J]. Chinese Journal of Solid Mechanics, 2010, 31(5): 532-552.
    [2]
    李新忠, 魏雪英, 赵均海. 混凝土力学性能的应变率效应[J]. 长安大学学报(自然科学版), 2012, 32(2): 82-86.

    LI Xinzhong, WEI Xueying, ZHAO Junhai. Strain rate effect on mechanical properties of concrete[J]. Journal of Chang’an University (Natural Science Edition), 2012, 32(2): 82-86.
    [3]
    YOO D Y, BANTHIA N. Impact resistance of fiber-reinforced concrete: a review[J]. Cement and Concrete Composites, 2019, 104: 103389. doi:10.1016/j.cemconcomp.2019.103389
    [4]
    赵昕. 超高韧性水泥基复合材料动态力学性能试验与理论研究[D]. 杭州: 浙江大学, 2018.
    [5]
    YU K Q, WANG Y C, YU J T, et al. A strain-hardening cementitious composites with the tensile capacity up to 8%[J]. Construction and Building Materials, 2017, 137: 410-419. doi:10.1016/j.conbuildmat.2017.01.060
    [6]
    DING Y, YU J T, YU K Q, et al. Basic mechanical properties of ultra-high ductility cementitious composites: from 40 MPa to 120 MPa[J]. Composite Structures, 2018, 185: 634-645. doi:10.1016/j.compstruct.2017.11.034
    [7]
    王义超, 侯梦君, 余江滔, 等. 聚乙烯纤维制备超高延性水泥基复合材料的试验研究[J]. 材料导报, 2018, 32(20): 3535-3540.

    WANG Yichao, HOU Mengjun, YU Jiangtao, et al. Experimental study on mechanical properties of ultra-high ductile cementitious composites[J]. Materials Review, 2018, 32(20): 3535-3540.
    [8]
    董伟, 泽里罗布, 银英姿, 等. 玄武岩纤维风积沙混凝土单轴受压应力-应变试验研究[J]. 江南娱乐网页版入口官网下载安装学报, 2026, 61(1): 67-75.

    DONG Wei, ZELI Luobu, YIN Yingzi, et al. Experimental study onuniaxial compressive stress–strain of basalt fiber aeolian sand concrete[J]. Journal of Southwest Jiaotong University, 2026, 61(1): 67-75.
    [9]
    CUROSU I, MECHTCHERINE V, MILLON O. Effect of fiber properties and matrix composition on the tensile behavior of strain-hardening cement-based composites (SHCCs) subject to impact loading[J]. Cement and Concrete Research, 2016, 82: 23-35. doi:10.1016/j.cemconres.2015.12.008
    [10]
    WANG Y C, LIU F C, YU J T, et al. Effect of polyethylene fiber content on physical and mechanical properties of engineered cementitious composites[J]. Construction and Building Materials, 2020, 251: 118917. doi:10.1016/j.conbuildmat.2020.118917
    [11]
    YU K Q, DAI J G, LU Z D, et al. Rate-dependent tensile properties of ultra-high performance engineered cementitious composites (UHP-ECC)[J]. Cement and Concrete Composites, 2018, 93: 218-234. doi:10.1016/j.cemconcomp.2018.07.016
    [12]
    LI H D, XU S L. Rate dependence of ultra high toughness cementitious composite under direct tension[J]. Journal of Zhejiang University: Science A, 2016, 17(6): 417-426. doi:10.1631/jzus.A1600031
    [13]
    王小娟, 崔浩儒, 周宏元, 等. 玄武岩纤维增强泡沫混凝土的单轴拉伸及准静态压缩性能[J]. 复合材料学报, 2023, 40(3): 1569-1585.

    WANG Xiaojuan, CUI Haoru, ZHOU Hongyuan, et al. Mechanical performance of basalt fiber reinforced foam concrete subjected to quasi-static tensile and compressive tests[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1569-1585.
    [14]
    YANG E H, LI V C. Strain-rate effects on the tensile behavior of strain-hardening cementitious composites[J]. Construction and Building Materials, 2014, 52: 96-104. doi:10.1016/j.conbuildmat.2013.11.013
    [15]
    RANADE R, LI V C, HEARD W F. Tensile rate effects in high strength-high ductility concrete[J]. Cement and Concrete Research, 2015, 68: 94-104. doi:10.1016/j.cemconres.2014.11.005
    [16]
    KANDA T, LI V C. Multiple cracking sequence and saturation in fiber reinforced cementitious composites[J]. Concrete Research and Technology, 1998, 9(2): 19-33. doi:10.3151/crt1990.9.2_19
    [17]
    MECHTCHERINE V, DE ANDRADE SILVA F, BUTLER M, et al. Behaviour of strain-hardening cement-based composites under high strain rates[J]. Journal of Advanced Concrete Technology, 2011, 9(1): 51-62. doi:10.3151/jact.9.51
    [18]
    BOSHOFF W P, VAN ZIJL G P A G. Time-dependent response of ECC: characterisation of creep and rate dependence[J]. Cement and Concrete Research, 2007, 37(5): 725-734. doi:10.1016/j.cemconres.2007.02.001
    [19]
    PYO S, WILLE K, EL-TAWIL S, et al. Strain rate dependent properties of ultra high performance fiber reinforced concrete (UHP-FRC) under tension[J]. Cement and Concrete Composites, 2015, 56: 15-24. doi:10.1016/j.cemconcomp.2014.10.002
    [20]
    Japan Society of Civil Engineers. Recommendations for design and construction of high performance fiber reinforced cement composite with multiple fine cracks (HPFRCC)[S]. [S.l.]: Japan Society of Civil Engineers, 2007.
    [21]
    GHIASSI B, XAVIER J, OLIVEIRA D V, et al. Application of digital image correlation in investigating the bond between FRP and masonry[J]. Composite Structures, 2013, 106: 340-349. doi:10.1016/j.compstruct.2013.06.024
    [22]
    KUMAR S L, ARAVIND H B, HOSSINEY N. Digital image correlation (DIC) for measuring strain in brick masonry specimen using Ncorr open source 2D MATLAB program[J]. Results in Engineering, 2019, 4: 100061. doi:10.1016/j.rineng.2019.100061
    [23]
    WEEKS C A, SUN C T. Modeling non-linear rate-dependent behavior in fiber-reinforced composites[J]. Composites Science and Technology, 1998, 58(3/4): 603-611.
    [24]
    YANG E H, LI V C. Tailoring engineered cementitious composites for impact resistance[J]. Cement and Concrete Research, 2012, 42(8): 1066-1071. doi:10.1016/j.cemconres.2012.04.006
    [25]
    NOH H W, TRUONG V D, CHO J Y, et al. Dynamic increase factors for fiber-reinforced cement composites: a review[J]. Journal of Building Engineering, 2022, 56: 104769. doi:10.1016/j.jobe.2022.104769
    [26]
    PARK J K, KIM S W, KIM D J. Matrix-strength-dependent strain-rate sensitivity of strain-hardening fiber-reinforced cementitious composites under tensile impact[J]. Composite Structures, 2017, 162: 313-324. doi:10.1016/j.compstruct.2016.12.022
    [27]
    CEB. Concrete structures under impact and impulsive loading: synthesis report: Bulletin d’information No. 187[S]. Lausanne: Comité Euro-International du Béton, 1988.
    [28]
    MALVAR L J, ROSS C A. Review of strain rate effects for concrete in tension[J]. ACI Materials Journal, 1998, 95(6): 735-739.
    [29]
    ROSS C A, JEROME D M, TEDESCO J W, et al. Moisture and strain rate effects on concrete strength[J]. ACI Materials Journal, 1996, 93(3): 293-300.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)/Tables(7)

    Article views(37) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    Return
    Return
      Baidu
      map