• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Turn off MathJax
Article Contents
FAN Binghui, SONG Zhenwen, WANG Liyuan, CHEN Shujie, CHEN Kangming, GU Gengyuan. Fire Prevention Strategies for Min-Zhe Timber Arch Lounge Bridges Based on Digital Reconstruction[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250197
Citation: FAN Binghui, SONG Zhenwen, WANG Liyuan, CHEN Shujie, CHEN Kangming, GU Gengyuan. Fire Prevention Strategies for Min-Zhe Timber Arch Lounge Bridges Based on Digital Reconstruction[J].Journal of Southwest Jiaotong University.doi:10.3969/j.issn.0258-2724.20250197

Fire Prevention Strategies for Min-Zhe Timber Arch Lounge Bridges Based on Digital Reconstruction

doi:10.3969/j.issn.0258-2724.20250197
  • Received Date:15 Apr 2025
  • Rev Recd Date:19 Oct 2025
  • Available Online:27 Nov 2025
  • Currently, most Min-Zhe timber arch lounge bridges suffer from the lack of detailed blueprint documentation, leading to unsatisfactory preservation effects and insufficient research on fire spread patterns and disaster prevention. To solve these problems, a digital reconstruction technology based on three-dimensional scanning and BIM parameterization was proposed to construct the digital twins of timber arch lounge bridges, and a BIM-fire dynamics simulator (FDS) was used to analyze the fire spread patterns and fire prevention strategies of such bridges. Firstly, the original point cloud model of Helong Bridge was obtained through on-site three-dimensional scanning, and after registration, denoising, and thinning processes, a BIM parametric digital twin was established to calculate its fire load density. Secondly, the IFC format was adopted to realize the interaction between BIM and FDS, and the fire digital twin of the timber arch lounge bridge was established. Simulation analysis was conducted through parameters such as heat release rate (HRR), fire spread phenomenon, visibility, temperature, and harmful gas concentration, and the fire spread patterns were derived by simulating and analyzing multiple typical fire source scenarios in FDS. Finally, fire prevention optimization strategies such as material flame-retardant treatment, bridge deck non-combustible transformation, and sprinkler system layout were discussed. The research results indicate that the fire load density of the timber arch lounge bridge is as high as 4 017.764 MJ/m2, far exceeding that of typical Chinese and foreign buildings, thus posing an extremely high fire risk. Among multiple typical fire source scenarios, excluding HRR mutation values, the HRR peaks of the arch structure and bridge bottom working conditions are stable at 100 MW and 95 MW, respectively. The HRR peaks of the bridge center and bridge head working conditions are stable at 88 MW and 70 MW, respectively. The HRR of the bridge side bottom and bridge top working conditions does not reach the peak within 1 000 seconds, with maximum values of 55 MW and 22 MW. Therefore, the fire risk of ignition under the bridge is the highest, followed by ignition on the bridge deck, while the fire risks of roof ignition and ignition at the bridge side bottom are relatively low. Through fire simulation and quantitative analysis of multiple fire parameters, it is confirmed that the three fire prevention measures can delay the fire spread of timber arch lounge bridges, and the upper and lower fire compartments, wood flame retardancy, and sprinkler systems reduce the HRR peak by 23 MW, 39 MW, and 63 MW, respectively. The research results can serve as the basis for information storage, quantitative analysis of fire spread, and preventive protection of timber arch lounge bridges and provide technical support for the long-term safe operation and maintenance of cultural heritage buildings.

  • loading
  • [1]
    杨艳, 陈宝春. 现存中国木拱桥结构调查与分析[J]. 福州大学学报(自然科学版), 2015, 43(6): 809-814.

    YANG Yan, CHEN Baochun. Investigation and analysis on existing China timber arch bridge structures[J]. Journal of Fuzhou University (Natural Science Edition), 2015, 43(6): 809-814.
    [2]
    陈舒洁, 刘永健, 秋原雅人, 等. 基于文化遗产价值的闽浙木拱廊桥防火策略[J]. 建筑科学与工程学报, 2022, 39(6): 163-174.

    CHEN Shujie, LIU Yongjian, AKIHARA M, et al. Fire prevention strategy of wooden arch covered bridge in Min-Zhe area based on cultural heritage value[J]. Journal of Architecture and Civil Engineering, 2022, 39(6): 163-174.
    [3]
    龚迪发. 福建木拱桥调查报告[M]. 北京: 科学出版社, 2013.
    [4]
    国家质量监督检验检疫总局, 中国国家标准化管理委员会. 建筑材料及制品燃烧性能分级: GB 8624—2012[S]. 北京: 中国标准出版社, 2013.
    [5]
    HAN Y W, LIN Z C, PENG H J, et al. Public participation in architectural heritage conservation—the case of wooden arch corridor bridge “Qiansheng bridge”[J]. Sustainability, 2024, 16(4): 1581. doi:10.3390/su16041581
    [6]
    刘妍. 匠艺的秘密与门槛——闽浙编木拱桥技术人类学研究[J]. 建筑学报, 2020(6): 28-33.

    LIU Yan. Thresholds and secrets of bridge-building craftsmanship an anthropological study on the building technology of woven arch bridges in southeast China[J]. Architectural Journal, 2020(6): 28-33.
    [7]
    CHEN S J, YANG Y, SHEN Z J. Impact of new construction activities of Min-Zhe wooden arch bridge in the conservation of its traditional building craftsmanship[J]. International Journal of Architectural Heritage, 2023, 17(8): 1207-1220. doi:10.1080/15583058.2021.2023694
    [8]
    CHEN S J, YANG Y, SHEN Z J, et al. Reconstruction of Min-Zhe wooden arch bridges and its legitimation as tangible and intangible heritage[J]. International Journal of Architectural Heritage, 2022, 16(12): 1779-1796. doi:10.1080/15583058.2021.1908444
    [9]
    YANG Y, NAKAMURA S, CHEN B C, et al. Mechanical behavior of Chinese woven timber arch bridges[J]. Engineering Structures, 2019, 195: 340-357. doi:10.1016/j.engstruct.2019.05.068
    [10]
    张铮, 张博恒, 李振, 等. 闽浙木拱廊桥榫卯节点受力性能研究[J]. 林产工业, 2023, 60(7): 58-63, 74.

    ZHANG Zheng, ZHANG Boheng, LI Zhen, et al. Research on mechanical performance of mortise-tenon joints of Minzhe timber arch bridge[J]. China Forest Products Industry, 2023, 60(7): 58-63,74.
    [11]
    杨艳, 郑裔, 黄聪燕, 等. 闽浙编木拱桥燕尾榫节点力学模型[J]. 交通运输工程学报, 2024, 24(5): 113-130.

    YANG Yan, ZHENG Yi, HUANG Congyan, et al. Mechanical model of dovetail joints of Min−Zhe woven timber arch bridges[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 113-130.
    [12]
    姜绍飞, 李朋泽, 项程, 等. 基于无人机与图像轮廓提取的古石拱桥逆向建模方法[J/OL]. 江南娱乐网页版入口官网下载安装学报, 2025: 1-9. (2025-09-22). https://kns.cnki.net/kcms/detail/51.1277.U.20250922.1409.004.html.
    [13]
    韩宜丹, 淳庆. 强风作用下木拱廊桥的风振响应分析——以文兴桥为例[J]. 文物保护与考古科学, 2021, 33(5): 102-112.

    HAN Yidan, CHUN Qing. Research on the response of arched timber lounge bridges under strong wind action: a case study of Wenxing Lounge Bridge[J]. Sciences of Conservation and Archaeology, 2021, 33(5): 102-112.
    [14]
    DENG H. Application of BIM technology in the seismic performance of “wood weaving” structure of wooden arcade bridges[J]. Shock and Vibration, 2022, 1: 8033059.
    [15]
    LI X R, CHUN Q, YUAN Y, et al. Research on flood resistance performance of traditional corridor woven arch bridges[J]. NPJ Heritage Science, 2025, 13: 328. doi:10.1038/s40494-025-01909-2
    [16]
    缪小龙. 闽浙木拱廊桥防火研究[J]. 消防科学与技术, 2009, 28(12): 945-948.

    MIAO Xiaolong. Fire protection research on covered bridge in Fujian and Zhejiang[J]. Fire Science and Technology, 2009, 28(12): 945-948.
    [17]
    陈秉安. 一起古木拱廊桥火灾事故的认定与分析[J]. 消防科学与技术, 2025, 44(1): 136-140.

    CHEN Bing’an. Identification and analysis of a fire accident of an ancient wooden arch covered bridge[J]. Fire Science and Technology, 2025, 44(1): 136-140.
    [18]
    官丽莉, 周小勇, 罗艳. 我国植物热值研究综述[J]. 生态学杂志, 2005, 24(4): 452-457.

    GUAN Lili, ZHOU Xiaoyong, LUO Yan. A review on the study of plant caloric value in China[J]. Chinese Journal of Ecology, 2005, 24(4): 452-457.
    [19]
    何介南, 康文星, 王东. 不同年龄阶段杉木人工林植物热值分析[J]. 生态学报, 2015, 35(2): 449-459.

    HE Jienan, KANG Wenxing, WANG Dong. The plant calorific values in the Chinese fir (Cunninghamia lanceolata) plantations at different ages[J]. Acta Ecologica Sinica, 2015, 35(2): 449-459.
    [20]
    刘妍. 编木拱桥: 技术与社会史[M]. 北京: 清华大学出版社, 2021.
    [21]
    王金平. 我国典型既有建筑火灾荷载的标准值[C]//2013中国消防协会科学技术年会论文集. 北京: 中国科学技术出版社, 2013: 136-137.
    [22]
    李胜利, 李孝斌. FDS火灾数值模拟[M]. 北京: 化学工业出版社, 2019.
    [23]
    林鹏, 王国元, 司有亮, 等. 隧道火灾排烟口位置对排烟效率的影响[J]. 江南娱乐网页版入口官网下载安装学报, 2019, 54(5): 1055-1062, 1112.

    LIN Peng, WANG Guoyuan, SI Youliang, et al. Influence of vent location on efficiency of smoke extraction in tunnel fire[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1055-1062, 112.
    [24]
    HUANG H, SONG S S, SHUAI C X, et al. Layered double hydroxide-polyaniline nanofibers in lightweight aerogels for bioinspired flame-retardant wood[J]. ACS Applied Nano Materials, 2023, 6(6): 4105-4111. doi:10.1021/acsanm.3c00195
    [25]
    XUE M M, XU J, LI Y, et al. Flame retardant effect of lignin/carbon nanohorns/potassium carbonate composite flame retardant on fir pretreated under different methods[J]. Thermochimica Acta, 2024, 731: 179641. doi:10.1016/j.tca.2023.179641
    [26]
    TIAN F Y, MAO W, XU X W. Effect of a layered combination of APP and TBC on the mechanics and flame retardancy of poplar strandboards[J]. Construction and Building Materials, 2023, 401: 132881. doi:10.1016/j.conbuildmat.2023.132881
    [27]
    陈希磊. 阻燃丙烯酸酯单体/低聚物的合成及其涂层热降机理与性能研究[D]. 合肥: 中国科学技术大学, 2008.
    [28]
    PING P, GAO X Z, KONG D P, et al. Experimental study on the synergistic strategy of liquid nitrogen and water mist for fire extinguishing and cooling of lithium-ion batteries[J]. Process Safety and Environmental Protection, 2024, 188: 713-725. doi:10.1016/j.psep.2024.05.077
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)/Tables(4)

    Article views(6) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    Return
    Return
      Baidu
      map