• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Turn off MathJax
Article Contents
SUN Yi, GAO Hongli, SONG Hongliang, YOU Zhichao. Study on Tool Condition-Integrated Online Optimization of Process Parameters[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240578
Citation: SUN Yi, GAO Hongli, SONG Hongliang, YOU Zhichao. Study on Tool Condition-Integrated Online Optimization of Process Parameters[J].Journal of Southwest Jiaotong University.doi:10.3969/j.issn.0258-2724.20240578

Study on Tool Condition-Integrated Online Optimization of Process Parameters

doi:10.3969/j.issn.0258-2724.20240578
  • Received Date:07 Nov 2024
    Available Online:06 Dec 2025
  • As demands for manufacturing quality and production efficiency continue to rise in modern industry, tool wear has emerged as a critical constraint affecting surface roughness. Traditional tool condition monitoring and process parameter optimization methods are often based on empirical models or static optimization strategies, limiting their adaptability to complex, dynamically changing, multivariable environments. In response, this study proposes an innovative approach integrating multi-scale distribution ratio (MSDR) with Bayesian multi-armed bandit (BMAB) for process parameter online optimization, incorporating real-time tool condition data into the optimization framework. Additionally, by combining Bayesian optimization and multi-armed bandit strategies, this method enables real-time adjustments to process parameters in dynamic manufacturing environments, effectively balancing exploration and exploitation to maximize machining efficiency. Compared to mainstream methods, MSDR demonstrates exceptional precision and stability in tool condition monitoring, achieving MAE, SMER, and RMSE values of 0.145, 0.258, and 0.194, respectively. BMAB also performs exceptionally in optimizing cutting efficiency and computational effectiveness, achieving 2305 mm3/min and a runtime of 2.92 seconds, respectively. Therefore, tool state-aware online optimization of process parameters presents a novel and promising technical pathway for high-precision manufacturing.

  • loading
  • [1]
    刘洪成, 袁德志, 朱锟鹏. 基于高斯过程潜力模型的刀具磨损预测[J]. 机械工程学报, 2023, 59(17): 310-324. doi:10.3901/JME.2023.17.310

    LIU Hongcheng, YUAN Dezhi, ZHU Kunpeng. Tool wear prediction based on Gaussian process latent force model[J]. Journal of Mechanical Engineering, 2023, 59(17): 310-324. doi:10.3901/JME.2023.17.310
    [2]
    YOU Z C, GAO H L, GUO L, et al. On-line milling cutter wear monitoring in a wide field-of-view camera[J]. Wear, 2020, 460: 203479.
    [3]
    高宏力, 孙弋, 郭亮, 等. 机械加工质量预测研究现状与发展趋势[J]. 江南娱乐网页版入口官网下载安装学报, 2024, 59(1): 121-141.

    GAO Hongli, SUN Yi, GUO Liang, et al. Research status and development trend of machining quality prediction[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 121-141.
    [4]
    LE V T, HOANG L, GHAZALI M F, et al. Optimization and comparison of machining characteristics of SKD61 steel in powder-mixed EDM process by TOPSIS and desirability approach[J]. The International Journal of Advanced Manufacturing Technology, 2024, 130(1): 403-424.
    [5]
    SUN Y, SONG H L, GAO H L, et al. Interpretable tool wear monitoring: Architecture with large-scale CNN and adaptive EMD[J]. Journal of Manufacturing Systems, 2025, 78: 294-307. doi:10.1016/j.jmsy.2024.12.001
    [6]
    BERUVIDES G, CASTAÑO F, QUIZA R, et al. Surface roughness modeling and optimization of tungsten–copper alloys in micro-milling processes[J]. Measurement, 2016, 86: 246-252. doi:10.1016/j.measurement.2016.03.002
    [7]
    YUSUP N, SARKHEYLI A, ZAIN A M, et al. Estimation of optimal machining control parameters using artificial bee colony[J]. Journal of Intelligent Manufacturing, 2014, 25(6): 1463-1472. doi:10.1007/s10845-013-0753-y
    [8]
    MOREIRA L C, LI W D, LU X, et al. Supervision controller for real-time surface quality assurance in CNC machining using artificial intelligence[J]. Computers & Industrial Engineering, 2019, 127: 158-168.
    [9]
    李聪波, 余必胜, 肖溱鸽, 等. 考虑刀具磨损的数控车削批量加工工艺参数节能优化方法[J]. 机械工程学报, 2021, 57(1): 217-229. doi:10.3901/JME.2021.01.217

    LI Congbo, YU Bisheng, XIAO Qinge, et al. A cutting parameter energy-saving optimization method for CNC turning batch processing considering tool wear[J]. Journal of Mechanical Engineering, 2021, 57(1): 217-229. doi:10.3901/JME.2021.01.217
    [10]
    张维煜, 李凯, 杨鑫. 基于参数优先级划分的飞轮电机多目标优化[J]. 江南娱乐网页版入口官网下载安装学报, 2023, 58(4): 922-932. doi:10.3969/j.issn.0258-2724.20220845

    ZHANG Weiyu, LI Kai, YANG Xin. Multi-objective optimization for flywheel motors based on parameter priority division[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 922-932. doi:10.3969/j.issn.0258-2724.20220845
    [11]
    KUNTOĞLU M, ASLAN A, SAĞLAM H, et al. Optimization and analysis of surface roughness, flank wear and 5 different sensorial data viatool condition monitoring system in turning of AISI 5140[J]. Sensors, 2020, 20(16): 4377. doi:10.3390/s20164377
    [12]
    NG J J, ZHONG Z W, LIU T I. Prediction of roughness heights of milled surfaces for product quality prediction and tool condition monitoring[J]. Journal of Materials and Applications, 2019, 8(2): 97-104. doi:10.32732/jma.2019.8.2.97
    [13]
    WANG Y H, WANG Y W, ZHENG L Y, et al. Online surface roughness prediction for assembly interfaces of vertical tail integrating tool wear under variable cutting parameters[J]. Sensors, 2022, 22(5): 1991. doi:10.3390/s22051991
    [14]
    由智超, 高宏力, 郭亮, 等. 基于改进信息熵的直接刀具状态监测设备部署[J]. 江南娱乐网页版入口官网下载安装学报, 2024, 59(1): 160-167. doi:10.3969/j.issn.0258-2724.20220025

    YOU Zhichao, GAO Hongli, GUO Liang, et al. Equipment deployment of direct tool-condition monitoring based on improved information entropy[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 160-167. doi:10.3969/j.issn.0258-2724.20220025
    [15]
    汪鑫, 廖小平, 刘树胜, 等. 多传感器融合下多工况刀具磨损状态预测的深度森林方法研究[J]. 仪器仪表学报, 2023, 44(9): 263-272. doi:10.19650/j.cnki.cjsi.J2310980

    WANG Xin, LIAO Xiaoping, LIU Shusheng, et al. Research on the deep forest method for tool wear state prediction under multiple working conditions with multi-sensor fusion[J]. Chinese Journal of Scientific Instrument, 2023, 44(9): 263-272. doi:10.19650/j.cnki.cjsi.J2310980
    [16]
    吕彪, 刘于萌. 基于贝叶斯网络的CTCS-3级列控车载系统韧性[J]. 江南娱乐网页版入口官网下载安装学报, 2022, 57(5): 949-959. doi:10.3969/j.issn.0258-2724.20210102

    LYU Biao, LIU Yumeng. Resilience assessment based on Bayesian network for on-board subsystem of CTCS-3 train control system[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 949-959. doi:10.3969/j.issn.0258-2724.20210102
    [17]
    邓聪颖, 叶波, 禄盛, 等. 基于切削稳定性与表面质量约束的铣削工艺参数优化研究[J]. 仪器仪表学报, 2021, 42(11): 190-199. doi:10.19650/j.cnki.cjsi.J2108272

    DENG Congying, YE Bo, LU Sheng, et al. Optimization of milling process parameters considering the constraints of cutting stability and surface quality[J]. Chinese Journal of Scientific Instrument, 2021, 42(11): 190-199. doi:10.19650/j.cnki.cjsi.J2108272
    [18]
    WANG D, ZHONG J J, SHEN C Q, et al. Correlation dimension and approximate entropy for machine condition monitoring: Revisited[J]. Mechanical Systems and Signal Processing, 2021, 152: 107497. doi:10.1016/j.ymssp.2020.107497
    [19]
    STEMP W J, CHILDS B E, VIONNET S, et al. The quantification of microwear on chipped stone tools: assessing the effectiveness of root mean square roughness (rq)[J]. Lithic Technology, 2008, 33(2): 173-189. doi:10.1080/01977261.2008.11721067
    [20]
    DIAZ-ROZO J, BIELZA C, LARRAÑAGA P. Machine-tool condition monitoring with Gaussian mixture models-based dynamic probabilistic clustering[J]. Engineering Applications of Artificial Intelligence, 2020, 89: 103434. doi:10.1016/j.engappai.2019.103434
    [21]
    WANG F B, LIU J K, SHU Q L. Milling wear of carbide tool for processing nickel-based alloy in cryogenic based on the entropy change[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(5): 1703-1713.
    [22]
    LIU M J, GONG Y D, SUN J Y, et al. The accuracy losing phenomenon in abrasive tool condition monitoring and a noval WMMC-JDA based data-driven method considered tool stochastic surface morphology[J]. Mechanical Systems and Signal Processing, 2023, 198: 110410. doi:10.1016/j.ymssp.2023.110410
    [23]
    贾智最, 杜茂华, 王沛鑫. 基于极限学习机与遗传算法的刀具状态监测[J/OL]. 昆明理工大学学报(自然科学版), 2024: 1-14. (2024-04-25). https: //kns.cnki.net/kcms/detail/53.1223.N.20240424.1556.002.html.
    [24]
    杨沛东, 黄华, 尉卫卫, 等. 基于注意力机制改进的PSO-BiLSTM刀具磨损预测[J/OL]. 北京航空航天大学学报, 1-12 [2024-11-07].https://doi.org/10.13700/j.bh.1001-5965.2023.0545.
    [25]
    徐昌鸿, 张树生, 梁嘉宸. 基于数控工艺信息挖掘的型腔特征粗加工刀具序列优化决策方法[J]. 计算机集成制造系统, 2024, 30(3): 1060-1071. doi:10.13196/j.cims.2023.0058

    XU Changhong, ZHANG Shusheng, LIANG Jiachen. NC process information mining based roughing tool sequence optimization and decision approach for pocket features[J]. Computer Integrated Manufacturing Systems, 2024, 30(3): 1060-1071. doi:10.13196/j.cims.2023.0058
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)/Tables(4)

    Article views(8) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    Return
    Return
      Baidu
      map