• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于AFC数据的地铁车站留乘概率分布估计

陈欣,罗霞,朱颖,毛远思

downloadPDF
陈欣, 罗霞, 朱颖, 毛远思. 基于AFC数据的地铁车站留乘概率分布估计[J]. 江南娱乐网页版入口官网下载安装学报, 2022, 57(2): 418-424. doi: 10.3969/j.issn.0258-2724.20200270
引用本文: 陈欣, 罗霞, 朱颖, 毛远思. 基于AFC数据的地铁车站留乘概率分布估计[J]. 江南娱乐网页版入口官网下载安装学报, 2022, 57(2): 418-424.doi:10.3969/j.issn.0258-2724.20200270
CHEN Xin, LUO Xia, ZHU Ying, MAO Yuansi. Delayed-Boarding Probability Distribution for Metro Stations Using Auto Fare Collection Data[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 418-424. doi: 10.3969/j.issn.0258-2724.20200270
Citation: CHEN Xin, LUO Xia, ZHU Ying, MAO Yuansi. Delayed-Boarding Probability Distribution for Metro Stations Using Auto Fare Collection Data[J].Journal of Southwest Jiaotong University, 2022, 57(2): 418-424.doi:10.3969/j.issn.0258-2724.20200270

基于AFC数据的地铁车站留乘概率分布估计

doi:10.3969/j.issn.0258-2724.20200270
基金项目:四川省科技厅科技计划(2020YJ0255)
详细信息
    作者简介:

    陈欣(1993—),男,博士研究生,研究方向为交通运输规划与管理,E-mail:swjtu_chenxin@163.com

    通讯作者:

    罗霞(1962—),女,教授,博士生导师,研究方向为交通运输规划与管理,E-mail:xia.luo@263.net

  • 中图分类号:U293.2

Delayed-Boarding Probability Distribution for Metro Stations Using Auto Fare Collection Data

  • 摘要:

    为研究地铁车站留乘特征,基于地铁自动售检票(auto fare collection, AFC)刷卡数据和运行图数据,研究了地铁车站留乘概率分布估计方法. 首先,基于乘客进、出站刷卡时刻与列车到、发时刻的关系,构造了聚集时间最大值、疏解时间的概率分布函数,提出了基于截断样本的聚集、疏解时间分布估计方法;其次,通过研究乘客进、出站刷卡时间、聚集时间、疏解时间及留乘次数间的关系,提出了地铁车站留乘概率分布估计方法;最后,以某地铁区段为例,在估计了留乘程度不同、类型不同车站的聚集、疏解时间分布的基础上,估计了这些车站在平峰、高峰时段内的留乘概率分布. 案例分析表明,在显著水平为5%的条件下,聚集、疏解时间分布估计结果可信;估计所得留乘概率分布与实地调查所得一致.

  • 图 1地铁无换乘乘客可能搭乘列车示意

    Figure 1.Feasible trains for passengers without transfer

    图 2 ${G_i}$ 含义示意

    Figure 2.Schematic of the meaning of ${G_i}$

    图 3区段示意

    Figure 3.Schematic of sections

    图 4在车站1、5搭乘各班次列车的乘客数量

    Figure 4.Number of passengers boarding each train at stations 1 and 5

    表 1乘客的可能行程特征列示

    Table 1.Features of feasible passenger itineraries

    行程
    编号
    聚集时间 留乘数/
    疏解
    时间
    搭乘列车
    编号
    1 $ [0,{T_{ - ,1}} - {t_ + }) $ 0 ${t_ - } - {T_{ + ,1}}$ 1
    2 $ [0,{T_{ - ,1}} - {t_ + }) $ 1 ${t_ - } - {T_{ + ,2}}$ 2
    3 $ [0,{T_{ - ,1}} - {t_ + }) $ 2 ${t_ - } - {T_{ + ,3}}$ 3
    4 $ [{T_{ - ,1}} - {t_ + },{T_{ - ,2}} - {t_ + }) $ 0 ${t_ - } - {T_{ + ,2}}$ 2
    5 $ [{T_{ - ,1}} - {t_ + },{T_{ - ,2}} - {t_ + }) $ 1 ${t_ - } - {T_{ + ,3}}$ 3
    6 $ [{T_{ - ,2}} - {t_ + },{T_{ - ,3}} - {t_ + }) $ 0 ${t_ - } - {T_{ + ,3}}$ 3
    下载: 导出CSV

    表 2部分车站的聚集、疏解时间分布参数估计值

    Table 2.Estimated distribution parameters for access and egress time at stations

    车站 聚集时间 疏解时间
    ${\mu _{{\text{A}} ,s,d} }$ ${\sigma _{{\text{A}} ,s,d} }$ P ${\mu _{{\text{E}},s,d} }$ ${\sigma _{{\text{E}},s,d} }$ P
    1 89.57 20.28 0.32
    2 99.45 40.45 0.15 101.26 39.73 0.67
    3 127.99 41.61 0.06 149.72 42.36 0.83
    4 10.23 8.73 0.53
    5 127.17 44.14 0.12
    6 57.40 26.43 0.98 63.82 27.86 0.99
    7 155.66 36.59 0.13 161.99 50.42 0.97
    8 110.04 26.73 0.36
    下载: 导出CSV

    表 3不同时间段上行方向留乘概率分布参数估计与调查结果

    Table 3.Estimated left-behind distribution parameters of delayed boarding and practical results in different periods

    车站 时段 $ {\beta _{s,d,q,0}} $ $ {\beta _{s,d,q,1}} $ $ {\beta _{s,d,q,2}} $ $ {\beta _{s,d,q,3}} $ $ {\beta _{s,d,q,4}} $ $ {\beta _{s,d,q,5}} $ ${\beta _{s,d,q,6} }$
    估计 调查 估计 调查 估计 调查 估计 调查 估计 调查 估计 调查 估计 调查
    1 高峰 08:30—09:00 0.974 1.000 0.003 0.022
    平峰 15:30—16:00 0.996 1.000 0.004
    2 高峰 08:30—09:00 0.712 0.720 0.164 0.140 0.105 0.110 0.013 0.030 0.005
    平峰 15:30—16:00 0.997 1.000 0.002 0
    3 高峰 08:30—09:00 0.002 0.030 0.014 0 0.076 0.060 0.254 0.280 0.528 0.490 0.118 0.120 0.007 0.020
    平峰 15:30—16:00 0.962 0.980 0.027 0.020 0.008 0.020
    5 高峰 09:00—9:30 0.842 0.870 0.125 0.127 0.007 0.003 0.014 0.006 0.005
    平峰 20:00—20:30 0.925 0.931 0.074 0.069 0.001 0
    6 高峰 09:00—9:30 0.985 0.980 0.013 0 0.002 0.003
    平峰 20:00—20:30 0.997 1.000 0.002 0.001
    7 高峰 16:30—17:00 0.910 0.940 0.055 0.060 0.024 0.012 0
    平峰 09:00—09:30 0.997 0.990 0.003 0.010
    下载: 导出CSV
  • [1] 张永生,姚恩建,刘莎莎,等. 城市轨道交通乘客半补偿路径选择建模与应用[J]. 铁道学报,2018,40(2): 1-7.doi:10.3969/j.issn.1001-8360.2018.02.001

    ZHANG Yongsheng, YAO Enjian, LIU Shasha, et al. Metro passengers’ semi-compensatory route choice modeling and application[J]. Journal of the China Railway Society, 2018, 40(2): 1-7.doi:10.3969/j.issn.1001-8360.2018.02.001
    [2] 曾璐,刘军,秦勇,等. 基于 AFC 数据的突发事件下城市轨道交通乘客路径决策研究[J]. 铁道学报,2019,41(8): 9-18.doi:10.3969/j.issn.1001-8360.2019.08.002

    ZENG Lu, LIU Jun, QIN Yong, et al. Route choice behavior of passengers in urban rail transit under emergency based on AFC data[J]. Journal of the China Railway Society, 2019, 41(8): 9-18.doi:10.3969/j.issn.1001-8360.2019.08.002
    [3] CATS O, HARTL M. Modelling public transport on-board congestion:comparing schedule-based and agent-based assignment approaches and their implications[J]. Journal of Advanced Transportation, 2016, 50(6): 1209-1224.doi:10.1002/atr.1398
    [4] 周玮腾,韩宝明. 考虑列车容量限制的地铁网络客流分配模型[J]. 华南理工大学学报 (自然科学版),2015,43(8): 126-134,143.

    ZHOU Weiteng, HAN Baoming. Passenger flow assignment model of subway networks under train capacity constraint[J]. Journal of South China University of Technology (Natural Science Edition), 2015, 43(8): 126-134,143.
    [5] ZHAO J J, ZHANG F, TU L, et al. Estimation of passenger route choice pattern using smart card data for complex metro systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(4): 790-801.doi:10.1109/TITS.2016.2587864
    [6] ZHU Y W, KOUTSOPOULOS H N, WILSON N H M. A probabilistic passenger-to-train assignment model based on automated data[J]. Transportation Research Part B:Methodological, 2017, 104: 522-542.doi:10.1016/j.trb.2017.04.012
    [7] ZHU W, WANG W, HUANG Z D. Estimating train choices of rail transit passengers with real timetable and automatic fare collection data[J]. Journal of Advanced Transportation, 2017, 2017: 5824051.1-5824051.12.
    [8] PAUL E C. Estimating train passenger load from automated data systems: application to London underground[D]. New York: Massachusetts Institute of Technology, 2010.
    [9] TIRACHINI A, SUN L J, ERATH A, et al. Valuation of sitting and standing in metro trains using revealed preferences[J]. Transport Policy, 2016, 47: 94-104.doi:10.1016/j.tranpol.2015.12.004
    [10] ZHU Y W, KOUTSOPOULOS H N, WILSON N H M. Inferring left behind passengers in congested metro systems from automated data[J]. Transportation Research Part C:Emerging Technologies, 2018, 94: 323-337.doi:10.1016/j.trc.2017.10.002
    [11] XIE X Y, LEURENT F. Comparison of passenger walking speed distribution models in mass transit stations[J]. Transportation Research Procedia, 2017, 27: 696-703.doi:10.1016/j.trpro.2017.12.081
    [12] LEURENT F, XIE X Y. Exploiting smartcard data to estimate distributions of passengers’ walking speed and distances along an urban rail transit line[J]. Transportation Research Procedia, 2017, 22: 45-54.doi:10.1016/j.trpro.2017.03.006
    [13] FULLER W A. Sampling statistics[M]. Hoboken: John Wiley & Sons, 2011.
    [14] HÖRCHER D, GRAHAM D J, ANDERSON R J. Crowding cost estimation with large scale smart card and vehicle location data[J]. Transportation Research Part B:Methodological, 2017, 95: 105-125.doi:10.1016/j.trb.2016.10.015
    [15] WOLYNETZ M. Algorithm AS 139:Maximum likelihood estimation in a linear model from confined and censored normal data[J]. Applied Statistics, 1979, 28(2): 195-206.doi:10.2307/2346749
    [16] YIN H D, WU J J, LIU Z Y et al. Optimizing the release of passenger flow guidance information in urban rail transit network via agent-based simulation[J]. Applied Mathematical Modelling, 2019, 72: 337-355.doi:10.1016/j.apm.2019.02.003
    [17] INGVARDSON J B, NIELSEN O A, RAVEAU S, et al. Passenger arrival and waiting time distributions dependent on train service frequency and station characteristics:a smart card data analysis[J]. Transportation Research Part C:Emerging Technologies, 2018, 90: 292-306.doi:10.1016/j.trc.2018.03.006
  • 加载中
图(4)/ 表(3)
计量
  • 文章访问数:437
  • HTML全文浏览量:222
  • PDF下载量:21
  • 被引次数:0
出版历程
  • 收稿日期:2020-05-07
  • 修回日期:2020-12-14
  • 刊出日期:2020-12-25

目录

    /

      返回文章
      返回
        Baidu
        map