• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

考虑残余强度的层状岩体损伤演化规律

寇昊,何川,陈子全,周子寒,蒙伟,肖龙鸽

downloadPDF
寇昊, 何川, 陈子全, 周子寒, 蒙伟, 肖龙鸽. 考虑残余强度的层状岩体损伤演化规律[J]. 江南娱乐网页版入口官网下载安装学报, 2023, 58(5): 1064-1072. doi: 10.3969/j.issn.0258-2724.20211083
引用本文: 寇昊, 何川, 陈子全, 周子寒, 蒙伟, 肖龙鸽. 考虑残余强度的层状岩体损伤演化规律[J]. 江南娱乐网页版入口官网下载安装学报, 2023, 58(5): 1064-1072.doi:10.3969/j.issn.0258-2724.20211083
KOU Hao, HE Chuan, CHEN Ziquan, ZHOU Zihan, MENG Wei, XIAO Longge. Damage Evolution Law of Layered Rock Mass Considering Residual Strength[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1064-1072. doi: 10.3969/j.issn.0258-2724.20211083
Citation: KOU Hao, HE Chuan, CHEN Ziquan, ZHOU Zihan, MENG Wei, XIAO Longge. Damage Evolution Law of Layered Rock Mass Considering Residual Strength[J].Journal of Southwest Jiaotong University, 2023, 58(5): 1064-1072.doi:10.3969/j.issn.0258-2724.20211083

考虑残余强度的层状岩体损伤演化规律

doi:10.3969/j.issn.0258-2724.20211083
基金项目:四川省科技计划(2021YJ0539);中建股份科技研发计划(CSCEC-2021-Z-26);四川省交通运输科技项目(2021-B-01);中央高校基本科研业务费专项资金(2682021CX013)
详细信息
    作者简介:

    寇昊(1992—),男,博士研究生,研究方向为隧道与地下工程,E-mail:kouhaoyanan@163.com

    通讯作者:

    陈子全(1989—),男,讲师,研究方向为隧道与地下工程,E-mail:chen_ziquan@163.com

  • 中图分类号:TU45

Damage Evolution Law of Layered Rock Mass Considering Residual Strength

  • 摘要:

    为更加真实准确地描述层状岩体的损伤演化过程,结合横观各向同性材料的弹性理论和损伤力学理论,采用修正的Lemaitre应变等价假设,建立了考虑残余强度的层状岩体损伤本构模型,通过页岩、千枚岩和板岩的三轴试验数据验证了模型的准确性,并分析了不同层理角度岩体的全过程损伤演化规律. 研究表明:模型既可以描述层状岩体的弹性变形,又可以较好地反映峰后应变软化过程;在初期加载过程中岩体的损伤值基本为0,随着应力增加,损伤值呈现出缓慢增长、加速增长、减速增长以及达到残余强度后稳定于1;页岩层理角度为60° 时损伤演化曲线最陡,损伤发展速度最快,最先破坏,千枚岩层厚较薄,强度更低,层理角度为90° 时最先破坏,而板岩相对较厚,强度更高,层理角度为45° 时最先破坏;岩体层理弱面的存在,导致了力学性能和破坏模式的各向异性,损伤演化规律也表现出明显的差异性.

  • 图 1横观各向同性材料坐标示意

    Figure 1.Diagram of coordinate system for the transversely isotropic materials

    图 2圆柱体试件示意

    Figure 2.Schematic diagram of cylinder rock

    图 3考虑残余强度与不考虑残余强度对比

    Figure 3.Comparison between the considered and unconsidered residual strengths

    图 4弹性模量的理论值与试验值对比

    Figure 4.Comparison between theoretical and experimental values of elastic modulus

    图 5页岩应力-应变关系的理论值与试验值对比

    Figure 5.Comparison between theoretical and experimental values of stress-strain curves for shale

    图 6千枚岩、板岩应力-应变关系的理论值与试验值对比

    Figure 6.Comparison between theoretical and experimental values of stress-strain curves for phyllite and slate

    图 7页岩的损伤演化曲线

    Figure 7.Damage evolution curves of shale

    图 8千枚岩、板岩的损伤演化曲线

    Figure 8.Damage evolution curves of phyllite and slate

    表 1页岩三轴压缩试验的主要参数[21]

    Table 1.Main parameters of triaxial compression test for shale[21]

    围压/MPa 层理角度/(°) 峰值应力/MPa 峰值应变/% 弹性模量/GPa 残余强度/MPa m ε0/%
    0 0 120.87 0.891 14.07 117.1 15.476 0.965
    30 108.63 0.687 16.67 95.8 14.929 0.720
    60 47.18 0.238 20.53 35.3 11.163 0.275
    90 124.07 0.525 24.61 103.3 17.374 0.569
    10 0 152.76 0.961 19.50 114.9 5.463 1.190
    30 142.62 0.710 24.10 99.5 6.181 0.901
    60 80.02 0.282 34.10 38.5 7.013 0.342
    90 147.29 0.422 46.64 83.4 3.291 0.513
    20 0 173.87 1.042 20.52 99.1 5.770 1.242
    30 153.05 0.751 25.57 75.2 5.148 0.925
    60 102.59 0.395 33.93 64.7 10.159 0.450
    90 204.14 0.485 54.13 132.7 3.841 0.563
    30 0 191.47 1.094 21.50 125.5 5.720 1.300
    30 180.17 0.872 25.57 96.7 6.979 1.051
    60 144.11 0.416 41.05 79.6 11.682 0.479
    90 227.50 0.584 56.60 138.9 2.576 0.684
    下载: 导出CSV

    表 2千枚岩、板岩三轴压缩试验的主要参数[22-23]σ3=10 MPa)

    Table 2.Main parameters of triaxial compression test for phyllite and slate[22-23]σ3= 10 MPa)

    岩性 层理角度/(°) 峰值应力/MPa 峰值应变/% 弹性模量/GPa 残余强度/MPa m ε0/%
    千枚岩[22] 0 69.29 0.489 15.7 40.0 20.726 0.547
    30 51.55 0.459 14.4 36.0 4.642 0.539
    45 53.39 0.362 16.7 33.5 14.487 0.412
    90 95.46 0.217 55.0 68.0 4.848 0.253
    板岩[23] 0 154.19 0.820 20.0 49.0 42.896 0.887
    15 111.41 0.590 20.5 67.5 29.327 0.644
    30 70.26 0.384 20.6 45.0 22.803 0.425
    45 55.82 0.267 23.5 30.0 50.078 0.285
    60 87.26 0.349 30.0 51.0 8.212 0.415
    75 121.25 0.400 34.5 100.0 10.882 0.443
    90 170.35 0.487 42.0 87.0 17.038 0.505
    下载: 导出CSV
  • [1] 吴永胜,谭忠盛,喻渝,等. 川西北茂县群千枚岩各向异性力学特性[J]. 岩土力学,2018,39(1): 207-215.

    WU Yongsheng, TAN Zhongsheng, YU Yu, et al. Anisotropically mechanical characteristics of Maoxian group phyllite in northwest of Sichuan province[J]. Rock and Soil Mechanics, 2018, 39(1): 207-215.
    [2] 陈子全,何川,吴迪,等. 高地应力层状软岩隧道大变形预测分级研究[J]. 江南娱乐网页版入口官网下载安装学报,2018,53(6): 1237-1244.doi:10.3969/j.issn.0258-2724.2018.06.020

    CHEN Ziquan, HE Chuan, WU Di, et al. Study of large deformation classification criterion for layered soft rock tunnels under high geostress[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1237-1244.doi:10.3969/j.issn.0258-2724.2018.06.020
    [3] 刘运思,王世鸣,郭志广,等. 横观各向同性岩体内时损伤本构模型研究[J]. 铁道科学与工程学报,2017,14(7): 1407-1414.doi:10.3969/j.issn.1672-7029.2017.07.009

    LIU Yunsi, WANG Shiming, GUO Zhiguang, et al. Endchronic damage constitutive model of transversely isotropic rock[J]. Journal of Railway Science and Engineering, 2017, 14(7): 1407-1414.doi:10.3969/j.issn.1672-7029.2017.07.009
    [4] 史越,傅鹤林,伍毅敏,等. 层状岩石单轴压缩损伤本构模型研究[J]. 华中科技大学学报(自然科学版),2020,48(9): 126-132.

    SHI Yue, FU Helin, WU Yimin, et al. Study on damage constitutive model of layered rock under uniaxial compression[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2020, 48(9): 126-132.
    [5] WANG Z, ZONG Z, QIAO L, et al. Elastoplastic model for transversely isotropic rocks[J]. International Journal of Geomechanics, 2018, 18(2): 04017149.1-04017149.15.
    [6] SAROGLOU H, TSIAMBAOS G. A modified Hoek-Brown failure criterion for anisotropic intact rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(2): 223-234.doi:10.1016/j.ijrmms.2007.05.004
    [7] SHI X C, YANG X, MENG Y F, et al. Modified Hoek-Brown failure criterion for anisotropic rocks[J]. Environmental Earth Sciences, 2016, 75(11): 1-11.
    [8] LI K H, YIN Z Y, HAN D Y, et al. Size effect and anisotropy in a transversely isotropic rock under compressive conditions[J]. Rock Mechanics and Rock Engineering, 2021, 54(9): 4639-4662.doi:10.1007/s00603-021-02558-0
    [9] POURAGHA M, EGHBALIAN M, WAN R. Micromechanical correlation between elasticity and strength characteristics of anisotropic rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 125: 104154.1-104154.8.
    [10] GHOLAMI R, RASOULI V. Mechanical and elastic properties of transversely isotropic slate[J]. Rock Mechanics and Rock Engineering, 2014, 47(5): 1763-1773.doi:10.1007/s00603-013-0488-2
    [11] 衡帅,杨春和,张保平,等. 页岩各向异性特征的试验研究[J]. 岩土力学,2015,36(3): 609-616.

    HENG Shuai, YANG Chunhe, ZHANG Baoping, et al. Experimental research on anisotropic properties of shale[J]. Rock and Soil Mechanics, 2015, 36(3): 609-616.
    [12] 储超群,吴顺川,张诗淮,等. 层状砂岩力学行为各向异性与破裂特征[J]. 中南大学学报(自然科学版),2020,51(8): 2232-2246.

    CHU Chaoqun, WU Shunchuan, ZHANG Shihuai, et al. Mechanical behavior anisotropy and fracture characteristics of bedded sandstone[J]. Journal of Central South University (Science and Technology), 2020, 51(8): 2232-2246.
    [13] 邓华锋,王伟,李建林,等. 层状砂岩各向异性力学特性试验研究[J]. 岩石力学与工程学报,2018,37(1): 112-120.

    DENG Huafeng, WANG Wei, LI Jianlin, et al. Experimental study on anisotropic characteristics of bedded sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 112-120.
    [14] 邓华锋,李涛,李建林,等. 层状岩体各向异性声学和力学参数计算方法研究[J]. 岩石力学与工程学报,2020,39(增1): 2725-2732.

    DENG Huafeng, LI Tao, LI Jianlin, et al. Study on calculation method of anisotropic acoustic and mechanical parameters of layered rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S1): 2725-2732.
    [15] 陈子全,何川,吴迪,等. 深埋碳质千枚岩力学特性及其能量损伤演化机制[J]. 岩土力学,2018,39(2): 445-456.

    CHEN Ziquan, HE Chuan, WU Di, et al. Mechanical properties and energy damage evolution mechanism of deep-buried carbonaceous phyllite[J]. Rock and Soil Mechanics, 2018, 39(2): 445-456.
    [16] 刘冬桥,王焯,张晓云. 岩石应变软化变形特性及损伤本构模型研究[J]. 岩土力学,2017,38(10): 2901-2908.

    LIU Dongqiao, WANG Zhuo, ZHANG Xiaoyun. Characteristics of strain softening of rocks and its damage constitutive model[J]. Rock and Soil Mechanics, 2017, 38(10): 2901-2908.
    [17] 温韬,唐辉明,马俊伟,等. 考虑初始损伤和残余强度的岩石变形过程模拟[J]. 地球科学,2019,44(2): 652-663.

    WEN Tao, TANG Huiming, MA Junwei, et al. Deformation simulation for rock in consideration of initial damage and residual strength[J]. Earth Science, 2019, 44(2): 652-663.
    [18] 曹文贵,赵衡,李翔,等. 基于残余强度变形阶段特征的岩石变形全过程统计损伤模拟方法[J]. 土木工程学报,2012,45(6): 139-145.

    CAO Wengui, ZHAO Heng, LI Xiang, et al. A statistical damage simulation method for rock full deformation process with consideration of the deformation characteristics of residual strength phase[J]. China Civil Engineering Journal, 2012, 45(6): 139-145.
    [19] 李海潮,张升. 基于修正Lemaitre应变等价性假设的岩石损伤模型[J]. 岩土力学,2017,38(5): 1321-1326, 1334.

    LI Haichao, ZHAGN Sheng. A constitutive damage model of rock based on the assumption of modified Lemaitre strain equivalence hypothesis[J]. Rock and Soil Mechanics, 2017, 38(5): 1321-1326, 1334.
    [20] 汪杰,宋卫东,付建新. 考虑节理倾角的岩体损伤本构模型及强度准则[J]. 岩石力学与工程学报,2018,37(10): 2253-2263.

    WANG Jie, SONG Weidong, FU Jianxin. A damage constitutive model and strength criterion of rock mass considering the dip angle of joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2253-2263.
    [21] 贾长贵,陈军海,郭印同,等. 层状页岩力学特性及其破坏模式研究[J]. 岩土力学,2013,34(增2): 57-61.

    JIA Changgui, CHEN Junhai, GUO Yintong, et al. Research on mechanical behaviors and failure modes of layer shale[J]. Rock and Soil Mechanics, 2013, 34(S2): 57-61.
    [22] 唐克东,王甲亮,管俊峰,等. 层状岩体在三轴加载下的扩容及塑性应变特性[J]. 水利学报,2021,52(1): 42-50.

    TANG Kedong, WANG Jialiang, GUAN Junfeng, et al. Dilatancy and plastic strain characteristics of layered rock mass under triaxial compressive test[J]. Journal of Hydraulic Engineering, 2021, 52(1): 42-50.
    [23] CHEN Y F, WEI K, LIU W, et al. Experimental characterization and micromechanical modelling of anisotropic slates[J]. Rock Mechanics and Rock Engineering, 2016, 49(9): 3541-3557.doi:10.1007/s00603-016-1009-x
  • 加载中
图(8)/ 表(2)
计量
  • 文章访问数:670
  • HTML全文浏览量:187
  • PDF下载量:86
  • 被引次数:0
出版历程
  • 收稿日期:2021-12-28
  • 修回日期:2022-04-21
  • 网络出版日期:2023-05-19
  • 刊出日期:2022-05-23

目录

    /

      返回文章
      返回
        Baidu
        map