• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

考虑冲刷效应的大跨桥梁地震-风-车-桥耦合振动分析

王亚伟,朱金,郑凯锋,苏永华,郭辉,李永乐

downloadPDF
王亚伟, 朱金, 郑凯锋, 苏永华, 郭辉, 李永乐. 考虑冲刷效应的大跨桥梁地震-风-车-桥耦合振动分析[J]. 江南娱乐网页版入口官网下载安装学报, 2024, 59(2): 323-331. doi: 10.3969/j.issn.0258-2724.20220091
引用本文: 王亚伟, 朱金, 郑凯锋, 苏永华, 郭辉, 李永乐. 考虑冲刷效应的大跨桥梁地震-风-车-桥耦合振动分析[J]. 江南娱乐网页版入口官网下载安装学报, 2024, 59(2): 323-331.doi:10.3969/j.issn.0258-2724.20220091
WANG Yawei, ZHU Jin, ZHENG Kaifeng, SU Yonghua, GUO Hui, LI Yongle. Coupled Vibration Analysis of Earthquake-Wind-Vehicle-Bridge for Long-Span Bridges Considering Scouring Effect[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 323-331. doi: 10.3969/j.issn.0258-2724.20220091
Citation: WANG Yawei, ZHU Jin, ZHENG Kaifeng, SU Yonghua, GUO Hui, LI Yongle. Coupled Vibration Analysis of Earthquake-Wind-Vehicle-Bridge for Long-Span Bridges Considering Scouring Effect[J].Journal of Southwest Jiaotong University, 2024, 59(2): 323-331.doi:10.3969/j.issn.0258-2724.20220091

考虑冲刷效应的大跨桥梁地震-风-车-桥耦合振动分析

doi:10.3969/j.issn.0258-2724.20220091
基金项目:国家自然科学基金(51908472);中国博士后科学基金(2019TQ0271, 2019M663554);四川省科学技术厅科技计划项目(2020YJ080)
详细信息
    作者简介:

    王亚伟(1991—),男,助理研究员,博士,研究方向为桥梁多动力,E-mail:hbuwyw1991@sina.com

    通讯作者:

    朱金(1988—),男,副教授,博士,研究方向为风-车-桥耦合振动,桥梁多动力,E-mail:zhujin19880102@126.com

  • 中图分类号:U447

Coupled Vibration Analysis of Earthquake-Wind-Vehicle-Bridge for Long-Span Bridges Considering Scouring Effect

  • 摘要:

    为研究冲刷效应对地震与风联合作用下大跨桥梁动力响应的影响,在已建立的地震-风-车-桥耦合振动分析模型基础上,利用 p - y 曲线( p 为土阻力, y 为变形)折减法考虑不同冲刷深度的桩土荷载-位移关系,根据桩土荷载-位移关系和冲刷深度更新桩基的侧向支撑刚度和长度,从而考虑了冲刷效应对大跨桥梁动力响应的影响,并将模型应用到江顺大桥冲刷效应的分析研究中. 研究结果表明:基础冲刷减弱了地基土对结构的侧向约束,从而降低结构的自振频率,侧向振型的自振频率最大降低6.01%;在运营车辆和风荷载作用下,基础冲刷对结构的振动响应影响很小;在地震发生后,基础冲刷会增大结构的横向振动,结构的横向位移响应极值最大增大9.1%,横向位移响应谱也相应增大,而对结构的竖向振动影响很小;基础冲刷可能减小车辆横向加速度的响应,车辆的横向加速度响应极值最大降低7.7%,对车辆的竖向振动影响很小.

  • 图 1斜拉桥模型(单位:m)

    Figure 1.Prototype of cable-stayed bridge (unit: m)

    图 2带有群桩基础的桥塔模型(单位:m)

    Figure 2.Prototype of bridge tower with group-pile foundation (unit: m)

    图 3模拟示意

    Figure 3.Simulation

    图 4桥址处桩土的p-y曲线

    Figure 4.p-ycurves of soil for piles at bridge site

    图 5主梁跨中的u(t)时程和w(t)时程

    Figure 5.Horizontal turbulent wind velocity time history and vertical turbulent wind velocity time history at bridge mid-span

    图 6桥梁支撑点N1、N3和N5位置处水平方向的地震动加速度时程

    Figure 6.Seismic acceleration time histories of support points N1, N3, and N5 along horizontal direction

    图 7地震和运营荷载作用下主梁跨中的位移响应

    Figure 7.Displacement responses at bridge mid-span under and seismic and operational loads

    图 8地震和运营荷载作用下主梁跨中的位移响应谱

    Figure 8.Displacement response spectrum at bridge mid-span under seismic and operational loads

    图 9地震和运营荷载作用下左桥塔顶的横向位移响应

    Figure 9.Lateral displacement responses at left tower top under seismic and operational loads

    图 10地震和运营荷载作用下左桥塔顶的横向位移响应谱

    Figure 10.Lateral displacement response spectrum at left tower top under seismic and operational loads

    图 11地震和运营荷载作用下代表车辆的加速度响应

    Figure 11.Acceleration responses of representative vehicle under seismic and operational loads

    表 1桥梁结构的前十阶自振频率和振型

    Table 1.First 10 natural vibration frequencies and modes of bridge

    振型数 自振频率/Hz 振型
    1 0.0905 纵飘(主梁)
    2 0.2029 1 阶对称侧弯(主梁、桥塔)
    3 0.2572 1 阶反对称侧弯(主梁、桥塔)
    4 0.2917 2 阶对称侧弯(主梁、桥塔)
    5 0.2944 1 阶对称竖弯(主梁)
    6 0.3331 1 阶反对称竖弯(主梁)
    7 0.3450 2 阶对称竖弯(主梁)
    8 0.3890 2 阶反对称竖弯(主梁)
    9 0.4138 2 阶反对称侧弯(主梁、桥塔)
    10 0.4274 1 阶对称扭转(主梁)
    下载: 导出CSV

    表 2群桩基础处不同土层的物理和力学参数

    Table 2.Physical and mechanical properties of different soil layers at group-pile foundation

    土层 地基土
    的类别
    土层
    厚度/m
    重度/
    (kN·m−3
    排水剪切
    强度/kPa
    内摩擦
    角/(°)
    泊松比 弹性模量/
    MPa
    单轴抗压
    强度/MPa
    最大主应力为50% 的应变 应变
    因子
    1 无黏性
    砂土
    7.5 18 30 0.30 3
    2 黏性土 10.0 20 93.8 0.35 21 0.007
    3 软岩 29.5 22 0.25 7240 3.45 0.0005
    下载: 导出CSV

    表 3不同冲刷深度时桥梁的自振频率

    Table 3.Natural frequencies of the bridge under various scour depths Hz

    振型序号 冲刷深度
    0 5 m 10 m 15 m 20 m
    1 0.0905 0.0903 0.0902 0.0901 0.0894
    2 0.2029 0.1994 0.1987 0.1984 0.1907
    3 0.2572 0.2531 0.2523 0.2520 0.2428
    4 0.2917 0.2912 0.2911 0.2910 0.2835
    5 0.2944 0.2933 0.2928 0.2926 0.2899
    6 0.3331 0.3261 0.3240 0.3229 0.2988
    7 0.3450 0.3366 0.3342 0.3331 0.3138
    8 0.3890 0.3860 0.3852 0.3848 0.3796
    9 0.4138 0.4070 0.4058 0.4053 0.3864
    10 0.4274 0.4179 0.4152 0.4139 0.3907
    下载: 导出CSV
  • [1] WARDHANA K, HADIPRIONO F C. Analysis of recent bridge failures in the United States[J]. Journal of Performance of Constructed Facilities, 2003, 17(3): 144-150.doi:10.1061/(ASCE)0887-3828(2003)17:3(144)
    [2] DIAZ E E M, MORENO F N, MOHAMMADI J. Investigation of common causes of bridge collapse in Colombia[J]. Practice Periodical on Structural Design and Construction, 2009, 14(4): 194-200.doi:10.1061/(ASCE)SC.1943-5576.0000006
    [3] 易仁彦,周瑞峰,黄茜. 近15年国内桥梁坍塌事故的原因和风险分析[J]. 交通科技,2015(5): 61-64.

    YI Renyan, ZHOU Ruifeng, HUANG Qian. Reason and risk of bridge collapse in recent 15 years[J]. Transportation Science & Technology, 2015(5): 61-64.
    [4] 商宇,叶爱君,王晓伟. 冲刷条件下的桩基桥梁振动台试验[J]. 中国公路学报,2017,30(12): 280-289.

    SHANG Yu, YE Aijun, WANG Xiaowei. Shake table test of pile supported bridge under scour condition[J]. China Journal of Highway and Transport, 2017, 30(12): 280-289.
    [5] 梁发云,王琛,贾承岳,等. 冲刷深度对简支桥模态参数影响的模型试验[J]. 振动与冲击,2016,35(14): 145-150.

    LIANG Fayun, WANG Chen, JIA Chengyue, et al. Model test on the influence of scour depth on modal parameters of simply supported bridge[J]. Journal of Vibration and Shock, 2016, 35(14): 145-150.
    [6] 熊文,邹晨,叶见曙. 基于动力特性识别的桥墩冲刷状态分析[J]. 中国公路学报,2017,30(5): 89-96.

    XIONG Wen, ZOU Chen, YE Jianshu. Condition assessment of bridge scour by tracing dynamic performances of bridges[J]. China Journal of Highway and Transport, 2017, 30(5): 89-96.
    [7] CHEN C C, WU W H, SHIH F, et al. Scour evaluation for foundation of a cable-stayed bridge based on ambient vibration measurements of superstructure[J]. NDT & E International, 2014, 66: 16-27.
    [8] BAO T, LIU Z L, BIRD K. Influence of soil characteristics on natural frequency-based bridge scour detection[J]. Journal of Sound and Vibration, 2019, 446: 195-210.doi:10.1016/j.jsv.2019.01.040
    [9] MALEKJAFARIAN A, PRENDERGAST L J, OBRIEN E. Use of mode shape ratios for pier scour monitoring in two-span integral bridges under changing environmental conditions[J]. Canadian Journal of Civil Engineering, 2020, 47(8): 962-973.doi:10.1139/cjce-2018-0800
    [10] KHAN M A, MCCRUM D P, PRENDERGAST L J, et al. Laboratory investigation of a bridge scour monitoring method using decentralized modal analysis[J]. Structural Health Monitoring, 2021, 20(6): 3327-3341.doi:10.1177/1475921720985122
    [11] 李克冰,张楠,方翔宇,等. 考虑河流冲刷作用的车桥耦合系统动力分析[J]. 振动与冲击,2014,33(19): 40-47,73.

    LI Kebing, ZHANG Nan, FANG Xiangyu, et al. Dynamic analysis of a vehicle-bridge coupled system considering river scouring[J]. Journal of Vibration and Shock, 2014, 33(19): 40-47,73.
    [12] KONG X, CAI C S. Scour effect on bridge and vehicle responses under bridge-vehicle-wave interaction[J]. Journal of Bridge Engineering, 2016, 21(4): 04015083.1-04015083.16.doi:10.1061/(ASCE)BE.1943-5592.0000868
    [13] WANG Z H, DUEÑAS -OSORIO L, PADGETT J E. Influence of scour effects on the seismic response of reinforced concrete bridges[J]. Engineering Structures, 2014, 76: 202-214.doi:10.1016/j.engstruct.2014.06.026
    [14] 杨婷婷,李岩,林雪琦. 基于车辆制动激励和小波包能量分析的连续梁桥基础冲刷识别方法[J]. 中国公路学报,2021,34(4): 51-60.

    YANG Tingting, LI Yan, LIN Xueqi. Foundation scour identification method based on vehicle braking excitation and wavelet packet energy analysis for continuous beam bridges[J]. China Journal of Highway and Transport, 2021, 34(4): 51-60.
    [15] 李岩,张振浩,林国伟,等. 基础冲刷对多种车激作用下桥梁动力行为的影响[J]. 哈尔滨工业大学学报,2021,53(9): 17-25.

    LI Yan, ZHANG Zhenhao, LIN Guowei, et al. Scour effect on dynamic performance of bridges under excitations of vehicles with various driving conditions[J]. Journal of Harbin Institute of Technology, 2021, 53(9): 17-25.
    [16] WEI K, HE H F, ZHANG J R, et al. An endurance time method-based fragility analysis framework for cable stayed bridge systems under scour and earthquake[J]. Ocean Engineering, 2021, 232: 109128.1-109128.12.doi:10.1016/j.oceaneng.2021.109128
    [17] REESE L C. LPILE Plus 3.0: A program for the analysis of piles and drilled shafts under lateral loads[CP]. Austin: Ensoft, 1997.
    [18] LI W, IGOE D, GAVIN K. Evaluation of CPT-basedp-ymodels for laterally loaded piles in siliceous sand[J]. Géotechnique Letters, 2014, 4(2): 110-117.
    [19] YANG K J, LI Q X, WANG F Y. Behavior of pile groups under lateral load[J]. China Ocean Engineering, 1991, 5(2): 235-244.
    [20] 谢耀峰. 横向承载群桩性状及承载力研究[J]. 岩土工程学报,1996,18(6): 39-45.

    XIE Yaofeng. Behavior and bearing capacity of laterally loaded pile groups[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(6): 39-45.
    [21] ZHU J, ZHANG W, WU M X. Coupled dynamic analysis of the vehicle-bridge-wind-wave system[J]. Journal of Bridge Engineering, 2018, 23(8): 04018054.1-04018054.17.
    [22] BAKER C J. A simplified analysis of various types of wind-induced road vehicle accidents[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1986, 22(1): 69-85.doi:10.1016/0167-6105(86)90012-7
    [23] LI Y L, QIANG S Z, LIAO H L, et al. Dynamics of wind-rail vehicle-bridge systems[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93: 483-507.doi:10.1016/j.jweia.2005.04.001
    [24] LÉGER P, IDÉ I M, PAULTRE P. Multiple-support seismic analysis of large structures[J]. Computers & Structures, 1990, 36(6): 1153-1158.
    [25] HAN Y, LIU S, HU J X, et al. Experimental study on aerodynamic derivatives of a bridge cross-section under different traffic flows[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 133: 250-262.doi:10.1016/j.jweia.2014.08.003
    [26] HAN Y, HU J X, CAI C S, et al. Experimental and numerical studies of aerodynamic forces on vehicles and bridges[J]. Wind and Structures, 2013, 17(2): 163-184.doi:10.12989/was.2013.17.2.163
    [27] American Association of State Highway Transportation Officials (AASHTO). Guide specifications for bridges vulnerable to coastal storms[S]. Washington D. C.: IHS Markit, 2008.
  • 加载中
图(11)/ 表(3)
计量
  • 文章访问数:547
  • HTML全文浏览量:228
  • PDF下载量:67
  • 被引次数:0
出版历程
  • 收稿日期:2022-02-02
  • 修回日期:2022-04-25
  • 网络出版日期:2023-09-06
  • 刊出日期:2022-05-23

目录

    /

      返回文章
      返回
        Baidu
        map