• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

强风作用下输电塔线体系连续性倒塌分析

李悦,谢强,张欣,张戬

downloadPDF
李悦, 谢强, 张欣, 张戬. 强风作用下输电塔线体系连续性倒塌分析[J]. 江南娱乐网页版入口官网下载安装学报, 2024, 59(2): 423-430. doi: 10.3969/j.issn.0258-2724.20220619
引用本文: 李悦, 谢强, 张欣, 张戬. 强风作用下输电塔线体系连续性倒塌分析[J]. 江南娱乐网页版入口官网下载安装学报, 2024, 59(2): 423-430.doi:10.3969/j.issn.0258-2724.20220619
LI Yue, XIE Qiang, ZHANG Xin, ZHANG Jian. Cascading Failure Analysis of Transmission Tower–Line System Under Strong Wind[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 423-430. doi: 10.3969/j.issn.0258-2724.20220619
Citation: LI Yue, XIE Qiang, ZHANG Xin, ZHANG Jian. Cascading Failure Analysis of Transmission Tower–Line System Under Strong Wind[J].Journal of Southwest Jiaotong University, 2024, 59(2): 423-430.doi:10.3969/j.issn.0258-2724.20220619

强风作用下输电塔线体系连续性倒塌分析

doi:10.3969/j.issn.0258-2724.20220619
基金项目:国家自然科学基金(52278523)
详细信息
    作者简介:

    李悦(1993—),女,博士研究生,研究方向为输电线路抗风,E-mail:1610226@tongji.edu.cn

    通讯作者:

    谢强(1971—),男,教授,研究方向为电力设备防灾减灾,E-mail:qxie@tongji.edu.cn

  • 中图分类号:TM75

Cascading Failure Analysis of Transmission Tower–Line System Under Strong Wind

  • 摘要:

    为分析强风作用下输电塔线体系连续性倒塌的过程,将已发生破坏的输电塔作为薄弱塔,采用等效位移的方式考虑薄弱塔倒塌对挂线点空间位置的影响,计算相邻输电塔(目标塔)在薄弱塔多组倒塌特征变量组合工况下的响应和破坏特征,确定对目标塔具有最大影响的薄弱塔倒塌特征变量. 结果表明:在发生连续性倒塌时,目标塔的破坏包括近薄弱塔侧的塔身破坏和塔头破坏2种形式;目标塔近薄弱塔侧背风面主材应力比最高,斜材应力比一直较低;塔身下部斜材失稳与主材应力的持续增大是目标塔整体倒塌的最直接原因;薄弱塔的倒塌过程持续时间是目标塔是否破坏的主要控制变量.

  • 图 1输电塔基本信息

    Figure 1.Basic information of transmission tower

    图 2目标塔及薄弱塔相对位置

    Figure 2.Relative position of target tower and weak tower

    图 3挂线点等效位移

    Figure 3.Equivalent displacement of suspension point

    图 4输电塔线体系模型风荷载

    Figure 4.Wind load of transmission tower–line system model

    图 5目标塔破坏类型

    Figure 5.Failure types of target tower

    图 6目标塔单元位置

    Figure 6.Element locations of target tower

    图 7目标塔主材B应力与绝缘子轴力

    Figure 7.Stress of main bracing B of target tower and axial force of insulator

    图 8目标塔斜材应力与绝缘子轴力

    Figure 8.Stress of diagonal bracings of target tower and axial force of insulator

    图 9目标塔塔身破坏过程关键变量的时程图

    Figure 9.Time-history of key variables in failure process of target tower body

    图 10目标塔塔头破坏过程

    Figure 10.Failure process of target tower head

    图 11目标塔主材应力比

    Figure 11.Stress ratio of main bracings of target tower

    图 12薄弱塔破坏触地工况下的目标塔破坏状态

    Figure 12.Failure state of target tower under weak tower collapse and ground contact condition

    图 13薄弱塔非破坏触地工况下的目标塔破坏状态

    Figure 13.Failure state of target tower under weak tower collapse and non-ground contact condition

    图 14薄弱塔倒塌破坏控制参数的主要影响区

    Figure 14.Main influence zones of weak tower collapse control parameters

    表 1输电塔材料

    Table 1.Material of transmission tower

    输电塔 屈服强度/MPa 屈服应变/% 本构模型
    Q235 235 0.15 理想弹塑性
    Q345 345 0.15 理想弹塑性
    下载: 导出CSV

    表 2输电线材料

    Table 2.Material of transmission line

    输电线 综合截面/mm2 弹性模量/MPa 线密度/(kg•km−1
    地线 118.9 123 631.00
    导线 338.9 69 1085.50
    下载: 导出CSV

    表 3薄弱塔倒塌触地工况

    Table 3.Weak tower collapse and ground contact condition

    破坏点 h/m θ/(°) T/s y/m z/m
    D1 22.0 156.4 0.5,1.0,
    2.0,3.0
    9.59 −42.00
    D2 20.0 140.3 16.61 −42.00
    D3 18.0 130.0 21.45 −42.00
    D4 16.0 122.2 25.38 −42.00
    D5 14.0 115.9 28.77 −42.00
    D6 12.0 110.7 31.81 −42.00
    D7 10.0 106.1 34.58 −42.00
    下载: 导出CSV
  • [1] 陈波,宋欣欣,吴镜泊. 输电塔线体系力学模型研究进展[J]. 工程力学,2021,38(5): 1-21.doi:10.6052/j.issn.1000-4750.2020.08.ST07

    CHEN Bo, SONG Xinxin, WU Jingbo. Advances in mechanical models of transmission tower-line systems[J]. Engineering Mechanics, 2021, 38(5): 1-21.doi:10.6052/j.issn.1000-4750.2020.08.ST07
    [2] 汪之松,刘兴龙,武彦君,等. 考虑SSI效应的输电塔-线体系风振响应简化分析[J]. 江南娱乐网页版入口官网下载安装学报,2019,54(2): 319-327.doi:10.3969/j.issn.0258-2724.20170715

    WANG Zhisong, LIU Xinglong, WU Yanjun, et al. Simplified analysis of wind-induced response of transmission tower-line system considering SSI effect[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 319-327.doi:10.3969/j.issn.0258-2724.20170715
    [3] CAI Y Z, XIE Q, XUE S T, et al. Fragility modelling framework for transmission line towers under winds[J]. Engineering Structures, 2019, 191: 686-697.doi:10.1016/j.engstruct.2019.04.096
    [4] 杨雄骏,黄金山,张建国,等. 基于插值与降维方法的输电塔线体系随机脉动风场有效模拟[J]. 振动与冲击,2021,40(9): 77-83.doi:10.13465/j.cnki.jvs.2021.09.011

    YANG Xiongjun, HUANG Jinshan, ZHANG Jianguo, et al. Effective simulation of stochastic fluctuating wind field of transmission tower-line system based on interpolation and dimension reduction method[J]. Journal of Vibration and Shock, 2021, 40(9): 77-83.doi:10.13465/j.cnki.jvs.2021.09.011
    [5] 杨风利,陈兵,许志勇,等. 500 kV长江大跨越输电塔风振系数研究[J]. 中国电机工程学报,2022,42(7): 2542-2556.

    YANG Fengli, CHEN Bing, XU Zhiyong, et al. Study on wind-induced vibration coefficients of the transmission tower in 500 kV long span line crossing the Yangtze River[J]. Proceedings of the CSEE, 2022, 42(7): 2542-2556.
    [6] 沈国辉,李保珩,郭勇,等. 输电塔扭转响应和扭转等效风荷载的计算方法[J]. 浙江大学学报(工学版),2022,56(3): 579-589.doi:10.3785/j.issn.1008-973X.2022.03.017

    SHEN Guohui, LI Baoheng, GUO Yong, et al. Calculation methods of torsion response and torsion equivalent static wind loading of transmission tower[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(3): 579-589.doi:10.3785/j.issn.1008-973X.2022.03.017
    [7] ZHANG Z Q, WANG D H, WANG T, et al. Aeroelastic wind tunnel testing on the wind-induced dynamic reaction response of transmission line[J]. Journal of Aerospace Engineering, 2021, 34(1): 04020105.1-04020105.11.
    [8] TAPIA-HERNÁNDEZ E, IBARRA-GONZÁLEZ S, DE-LEÓN-ESCOBEDO D. Collapse mechanisms of power towers under wind loading[J]. Structure and Infrastructure Engineering, 2017, 13(6): 766-782.doi:10.1080/15732479.2016.1190765
    [9] ASGARIAN B, DADRAS ESLAMLOU S, ZAGHI A E, et al. Progressive collapse analysis of power transmission towers[J]. Journal of Constructional Steel Research, 2016, 123: 31-40.doi:10.1016/j.jcsr.2016.04.021
    [10] 姚瑶,王凌旭,张有佳. 高压输电塔主材的角钢并联加固轴压承载力[J]. 江南娱乐网页版入口官网下载安装学报,2020,55(3): 561-569.doi:10.3969/j.issn.0258-2724.20190370

    YAO Yao, WANG Lingxu, ZHANG Youjia. Axial bearing capacity of angle parallel reinforcement for high voltage transmission towers[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 561-569.doi:10.3969/j.issn.0258-2724.20190370
    [11] 刘慕广,黄琳玲,谢壮宁. 雷暴风和良态风下输电塔气弹模型风洞试验[J]. 高电压技术,2022,48(2): 594-602.

    LIU Muguang, HUANG Linling, XIE Zhuangning. Wind tunnel testing of aeroelastic transmission tower under thunderstorm wind and boundary layer wind[J]. High Voltage Engineering, 2022, 48(2): 594-602.
    [12] 赵爽,晏致涛,李正良,等. 1000 kV苏通大跨越输电塔线体系气弹模型的风洞试验研究[J]. 中国电机工程学报,2018,38(17): 5257-5265,5323.

    ZHAO Shuang, YAN Zhitao, LI Zhengliang, et al. Investigation on wind tunnel tests of an aeroelastic model of 1000 kV Sutong long span transmission tower-line system[J]. Proceedings of the CSEE, 2018, 38(17): 5257-5265,5323.
    [13] ZHANG J, XIE Q. Failure analysis of transmission tower subjected to strong wind load[J]. Journal of Constructional Steel Research, 2019, 160: 271-279.doi:10.1016/j.jcsr.2019.05.041
    [14] TIAN L, MA R S, PAN H Y, et al. Progressive collapse analysis of long-span transmission tower-line system under multi-component seismic excitations[J]. Advances in Structural Engineering, 2017, 20(12): 1920-1932.doi:10.1177/1369433217700426
    [15] ALMINHANA F, ALBERMANI F, MASON M. Cascading collapse of transmission lines[J]. Proceedings of the Institution of Civil Engineers− Engineering and Computational Mechanics, 2018, 171(3): 115-132.doi:10.1680/jencm.18.00010
    [16] 阎启,李杰. 基于演化相位谱的脉动风速模拟[J]. 振动与冲击,2011,30(9): 163-168.doi:10.3969/j.issn.1000-3835.2011.09.035

    YAN Qi, LI Jie. Evolutionary-phase-spectrum based simulation of fluctuating wind speed[J]. Journal of Vibration and Shock, 2011, 30(9): 163-168.doi:10.3969/j.issn.1000-3835.2011.09.035
  • 加载中
图(14)/ 表(3)
计量
  • 文章访问数:538
  • HTML全文浏览量:433
  • PDF下载量:76
  • 被引次数:0
出版历程
  • 收稿日期:2022-09-15
  • 修回日期:2022-11-10
  • 网络出版日期:2023-09-19
  • 刊出日期:2022-11-10

目录

    /

      返回文章
      返回
        Baidu
        map