| Citation: | YANG Jianwei, FENG Suhua, GUO Huibin, LIAO Kai, XIANG Yueping. Optimal Configuration of Photovoltaic and Hybrid Energy Storage System Capacity in Multi-Substation Interconnected Traction Power Supply System[J].Journal of Southwest Jiaotong University, 2025, 60(6): 1537-1549.doi:10.3969/j.issn.0258-2724.20240028 |
With the continuous expansion of China’s electrified railways, the integration of photovoltaic (PV) and hybrid energy storage systems (HESS) into the traction power supply system (TPSS) has gradually become an effective approach to achieve energy conservation and emission reduction in electrified railways. In order to ensure the stable and economical operation of multi-substation interconnected TPSS, the optimal configuration method of PV and HESS capacity based on a techno-economic evaluation system was proposed. By analyzing the operation characteristics of traction load and the charging and discharging characteristics of mixed energy storage media, the operation conditions of the system were divided, and the energy management strategy considering energy conservation and three-phase voltage imbalance was given by controlling the power allocation under different conditions. On the basis of comprehensively considering the boundaries of stable operation and economic benefits of the system, the technical and economic effects of the system operation were quantitatively evaluated with the net benefit throughout the full life cycle, energy utilization rate, and negative-sequence capacity as optimization objectives. Furthermore, a two-layer optimization model for PV and HESS capacity configuration based on the proposed energy management strategy was established, and the parameters of the capacity optimization layer were iteratively modified according to the daily operation effect of the energy management layer. China’s high-speed railway was taken as an example for analysis. Simulation results have shown that the proposed method can effectively realize the optimal configuration of PV and HESS in multiple interconnected substations, where the total cost is reduced by 21.18%; the energy utilization rate is up to 74.61%, and the three-phase voltage unbalance meets the upper limit of 2% in the national standard.

| [1] |
发展和改革部. 中国国家铁路集团有限公司2022年统计公报[N/OL]. 人民铁道, 2023-03-17[2024-01-16]. http://www.china-railway.com.cn/xwzx/zhxw/202303/t20230317_126718.html.
|
| [2] |
耿安琪, 胡海涛, 张育维, 等. 基于阶梯能量管理的电气化铁路混合储能系统控制策略[J]. 电工技术学报, 2021, 36(23): 4916-4925.
GENG Anqi, HU Haitao, ZHANG Yuwei, et al. Control strategy of hybrid energy storage system for electrified railway based on increment energy management[J]. Transactions of China Electrotechnical Society, 2021, 36(23): 4916-4925.
|
| [3] |
陈维荣, 王小雨, 韩莹, 等. 基于RPC的光储接入牵引供电系统协调控制方法[J]. 江南娱乐网页版入口官网下载安装学报, 2024, 59(1): 1-10.
CHEN Weirong, WANG Xiaoyu, HAN Ying, et al. Coordinated control method of photovoltaic and battery system connected to traction power supply system based on railway power conditioner[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 1-10.
|
| [4] |
邓文丽, 戴朝华, 陈维荣. 轨道交通能源互联网背景下光伏在交/直流牵引供电系统中的应用及关键问题分析[J]. 中国电机工程学报, 2019, 39(19): 5692-5702, 5897.
DENG Wenli, DAI Chaohua, CHEN Weirong. Application of PV generation in AC/DC traction power supply system and the key problem analysis under the background of rail transit energy Internet[J]. Proceedings of the CSEE, 2019, 39(19): 5692-5702, 5897.
|
| [5] |
张丽艳, 贾瑛, 韩笃硕, 等. 电气化铁路同相储能供电系统能量管理及容量配置策略[J]. 江南娱乐网页版入口官网下载安装学报, 2023, 58(1): 22-29.
ZHANG Liyan, JIA Ying, HAN Dushuo, et al. Energy management and capacity allocation scheme for co-phase traction power supply and energy storage system in electrified railways[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 22-29.
|
| [6] |
JI L, YU Z W, MA J, et al. The potential of photovoltaics to power the railway system in China[J]. Energies, 2020, 13(15): 3844.
doi:10.3390/en13153844
|
| [7] |
贾利民, 程鹏, 张蜇, 等. “双碳” 目标下轨道交通与能源融合发展路径和策略研究[J]. 中国工程科学, 2022, 24(3): 173-183.
doi:10.15302/J-SSCAE-2022.03.018
JIA Limin, CHENG Peng, ZHANG Zhe, et al. Integrated development of rail transit and energies in China: development paths and strategies[J]. Strategic Study of CAE, 2022, 24(3): 173-183.
doi:10.15302/J-SSCAE-2022.03.018
|
| [8] |
黄小红, 赵艺, 李群湛, 等. 电气化铁路同相储能供电技术[J]. 江南娱乐网页版入口官网下载安装学报, 2020, 55(4): 856-864.
doi:10.3969/j.issn.0258-2724.20181083
HUANG Xiaohong, ZHAO Yi, LI Qunzhan, et al. Co-phase traction power supply and energy storage technology for electrified railway[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 856-864.
doi:10.3969/j.issn.0258-2724.20181083
|
| [9] |
胡海涛, 陈俊宇, 葛银波, 等. 高速铁路再生制动能量储存与利用技术研究[J]. 中国电机工程学报, 2020, 40(1): 246-256, 391.
HU Haitao, CHEN Junyu, GE Yinbo, et al. Research on regenerative braking energy storage and utilization technology for high-speed railways[J]. Proceedings of the CSEE, 2020, 40(1): 246-256,391.
|
| [10] |
刘元立, 李群湛. 含光伏和混合储能的同相牵引供电系统日前优化调度[J]. 江南娱乐网页版入口官网下载安装学报, 2023, 58(1): 30-39.
LIU Yuanli, LI Qunzhan. Day-ahead optimal scheduling of co-phase traction power supply system with photovoltaic and hybrid energy storage[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 30-39.
|
| [11] |
AGUADO J A, SÁNCHEZ RACERO A J, DE LA TORRE S. Optimal operation of electric railways with renewable energy and electric storage systems[J]. IEEE Transactions on Smart Grid, 2018, 9(2): 993-1001.
doi:10.1109/TSG.2016.2574200
|
| [12] |
LIU Y L, CHEN M W, LU S F, et al. Optimized sizing and scheduling of hybrid energy storage systems for high-speed railway traction substations[J]. Energies, 2018, 11(9): 2199.
doi:10.3390/en11092199
|
| [13] |
郑政. 含光伏发电的牵引供电系统混合储能优化配置研究[D]. 成都: 江南娱乐网页版入口官网下载安装, 2018.
|
| [14] |
邓文丽, 戴朝华, 韩春白雪, 等. 计及再生制动能量回收和电能质量改善的铁路背靠背混合储能系统及其控制方法[J]. 中国电机工程学报, 2019, 39(10): 2914-2924.
DENG Wenli, DAI Chaohua, HAN Chunbaixue, et al. Back-to-back hybrid energy storage system of electric railway and its control method considering regenerative braking energy recovery and power quality improvement[J]. Proceedings of the CSEE, 2019, 39(10): 2914-2924.
|
| [15] |
李群湛, 王喜军, 黄小红, 等. 电气化铁路飞轮储能技术研究[J]. 中国电机工程学报, 2019, 39(7): 2025-2033.
LI Qunzhan, WANG Xijun, HUANG Xiaohong, et al. Research on flywheel energy storage technology for electrified railway[J]. Proceedings of the CSEE, 2019, 39(7): 2025-2033.
|
| [16] |
袁佳歆, 曲锴, 郑先锋, 等. 高速铁路混合储能系统容量优化研究[J]. 电工技术学报, 2021, 36(19): 4161-4169, 4182.
YUAN Jiaxin, QU Kai, ZHENG Xianfeng, et al. Optimizing research on hybrid energy storage system of high speed railway[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4161-4169, 4182.
|
| [17] |
张育维, 胡海涛, 耿安琪, 等. 考虑削峰填谷的电气化铁路混合储能系统容量优化配置[J]. 电力自动化设备, 2023, 43(2): 44-50.
ZHANG Yuwei, HU Haitao, GENG Anqi, et al. Capacity optimization configuration of hybrid energy storage system for electrified railway considering peak load shifting[J]. Electric Power Automation Equipment, 2023, 43(2): 44-50.
|
| [18] |
CHEN J Y, GE Y B, WANG K, et al. Integrated regenerative braking energy utilization system for multi-substations in electrified railways[J]. IEEE Transactions on Industrial Electronics, 2023, 70(1): 298-310.
doi:10.1109/TIE.2022.3146563
|
| [19] |
邓文丽, 戴朝华, 陈维荣, 等. 铁路功率调节器研究进展[J]. 中国电机工程学报, 2020, 40(14): 4640-4655, 4742.
DENG Wenli, DAI Chaohua, CHEN Weirong, et al. Research progress of railway power conditioner[J]. Proceedings of the CSEE, 2020, 40(14): 4640-4655, 4742.
|
| [20] |
罗嘉明, 韦晓广, 高仕斌, 等. 高速铁路储能系统容量配置与能量管理技术综述与展望[J]. 中国电机工程学报, 2022, 42(19): 7028-7051.
LUO Jiaming, WEI Xiaoguang, GAO Shibin, et al. Summary and outlook of capacity configuration and energy management technology of high-speed railway energy storage system[J]. Proceedings of the CSEE, 2022, 42(19): 7028-7051.
|
| [21] |
杨浩丰, 刘冲, 李彬, 等. 基于列车运行工况的城轨地面式混合储能系统控制策略研究[J]. 电工技术学报, 2021, 36(增1): 168-178.
YANG Haofeng, LIU Chong, LI Bin, et al. Research on control strategy of urban rail ground hybrid energy storage device based on train operating condition[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 168-178.
|
| [22] |
GE Y B, HU H T, CHEN J Y, et al. Combined active and reactive power flow control strategy for flexible railway traction substation integrated with ESS and PV[J]. IEEE Transactions on Sustainable Energy, 2022, 13(4): 1969-1981.
doi:10.1109/TSTE.2022.3178095
|
| [23] |
吴小刚, 刘宗歧, 田立亭, 等. 基于改进多目标粒子群算法的配电网储能选址定容[J]. 电网技术, 2014, 38(12): 3405-3411.
WU Xiaogang, LIU Zongqi, TIAN Liting, et al. Energy storage device locating and sizing for distribution network based on improved multi-objective particle swarm optimizer[J]. Power System Technology, 2014, 38(12): 3405-3411.
|
| [24] |
胡元潮, 阮羚, 阮江军, 等. 基于改进逼近理想点法的变电站智能化改造评估[J]. 电网技术, 2012, 36(10): 42-48.
HU Yuanchao, RUAN Ling, RUAN Jiangjun, et al. Evaluation on intelligent renovation of substations based on improved TOPSIS[J]. Power System Technology, 2012, 36(10): 42-48.
|
| [25] |
李相俊, 马锐, 王上行, 等. 考虑电池寿命的商业园区储能电站运行控制策略[J]. 高电压技术, 2020, 46(1): 62-70.
LI Xiangjun, MA Rui, WANG Shangxing, et al. Operation control strategy for energy storage station after considering battery life in commercial park[J]. High Voltage Engineering, 2020, 46(1): 62-70.
|